Photo AI

Given the function: $$ f(x) = \frac{1}{x(3x - 1)^2} = \frac{A}{x} + \frac{B}{(3x - 1)} + \frac{C}{(3x - 1)^2} $$ (a) Find the values of the constants A, B and C - Edexcel - A-Level Maths Pure - Question 3 - 2012 - Paper 7

Question icon

Question 3

Given-the-function:--$$-f(x)-=-\frac{1}{x(3x---1)^2}-=-\frac{A}{x}-+-\frac{B}{(3x---1)}-+-\frac{C}{(3x---1)^2}-$$--(a)-Find-the-values-of-the-constants-A,-B-and-C-Edexcel-A-Level Maths Pure-Question 3-2012-Paper 7.png

Given the function: $$ f(x) = \frac{1}{x(3x - 1)^2} = \frac{A}{x} + \frac{B}{(3x - 1)} + \frac{C}{(3x - 1)^2} $$ (a) Find the values of the constants A, B and C. ... show full transcript

Worked Solution & Example Answer:Given the function: $$ f(x) = \frac{1}{x(3x - 1)^2} = \frac{A}{x} + \frac{B}{(3x - 1)} + \frac{C}{(3x - 1)^2} $$ (a) Find the values of the constants A, B and C - Edexcel - A-Level Maths Pure - Question 3 - 2012 - Paper 7

Step 1

Find the values of the constants A, B and C

96%

114 rated

Answer

To find the constants A, B, and C, we first combine the fractions on the right-hand side and set them equal to the left-hand side:

f(x)=A(3x1)2+Bx(3x1)+Cxx(3x1)2f(x) = \frac{A(3x - 1)^2 + Bx(3x - 1) + Cx}{x(3x - 1)^2}

Then, expanding the numerators and combining like terms gives:

  1. Set x = 0: 1=A(3(0)1)21 = A(3(0) - 1)^2
    Hence, A=4A = 4

  2. Set x approaching ( \frac{1}{3} ): 1=CC=3 (considering the limit)1 = C \rightarrow C = 3 \text{ (considering the limit)}

  3. Compare coefficients: From the coefficient of ( x^2 ): 0=9A+3B0 = 9A + 3B
    0=9(4)+3BB=30 = 9(4) + 3B \Rightarrow B = -3

Thus, the constants are:

  • A = 4, B = -3, C = 3.

Step 2

Hence find \( \int f(x) \, dx \)

99%

104 rated

Answer

Now, substituting the values of A, B, and C back into the integral:

f(x)=4x+3(3x1)+3(3x1)2f(x) = \frac{4}{x} + \frac{-3}{(3x - 1)} + \frac{3}{(3x - 1)^2}

We can integrate term by term:

  1. ( \int \frac{4}{x} , dx = 4 \ln |x| + C_1 )
  2. ( \int \frac{-3}{3x - 1} , dx = - \ln |3x - 1| + C_2 )
  3. For ( \int \frac{3}{(3x - 1)^2} , dx ):
    • Use substitution ( u = 3x - 1 \Rightarrow du = 3 , dx \Rightarrow dx = \frac{du}{3} )
    • This results in: 13(3x1)+C3-\frac{1}{3(3x-1)} + C_3

Combining all parts gives:

f(x)dx=4lnxln3x113(3x1)+C\int f(x) \, dx = 4 \ln |x| - \ln |3x - 1| - \frac{1}{3(3x - 1)} + C.

Step 3

Find \( \int^2 f(x) \, dx \)

96%

101 rated

Answer

Now we evaluate:

2f(x)dx=[4lnxln3x113(3x1)]02\int^2 f(x) \, dx = \left[ 4 \ln |x| - \ln |3x - 1| - \frac{1}{3(3x - 1)} \right]_{0}^{2}.

Substituting x = 2:

  • Calculate: ( 4 \ln 2 - \ln(5) - \frac{1}{3 imes 5} )

Since we want the answer in the form a + ln b:

  • Identify constants a and b: a=4ln2115, b=5a = 4 \ln 2 - \frac{1}{15}, \ b = 5.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;