Photo AI
Question 2
Find \[\int_{0}^{\frac{\pi}{4}} x \cos 4x \, dx\] Figure 3 shows part of the curve with equation \[ y = \sqrt{x} \sin 2x, \quad x > 0 \] The finite region R, s... show full transcript
Step 1
Answer
To solve this integral, we will use the method of integration by parts. Let:
[ u = x \quad \Rightarrow \quad du = dx ]
[ dv = \cos 4x , dx \quad \Rightarrow \quad v = \frac{1}{4} \sin 4x ]
Using integration by parts, ( \int u , dv = uv - \int v , du ), we have:
[ \int x \cos 4x , dx = \left[ x \cdot \frac{1}{4} \sin 4x \right]_{0}^{\frac{\pi}{4}} - \int \frac{1}{4} \sin 4x , dx ]
Evaluating the first term:
[ \left[ x \cdot \frac{1}{4} \sin 4x \right]_{0}^{\frac{\pi}{4}} = \frac{\frac{\pi}{4}}{4} \sin(4 \cdot \frac{\pi}{4}) - 0 = \frac{\pi}{16} \cdot 1 = \frac{\pi}{16} ]
Now, we need to evaluate the integral ( \int \frac{1}{4} \sin 4x , dx ):
[ \int \frac{1}{4} \sin 4x , dx = -\frac{1}{16} \cos 4x + C ]
Substituting back, we find:
[ \int x \cos 4x , dx = \frac{\pi}{16} + \frac{1}{16} \cos 4x \bigg|_{0}^{\frac{\pi}{4}} = \frac{\pi}{16} - \left( \frac{1}{16} \cos(\pi) - \frac{1}{16} \cos(0) \right) = \frac{\pi}{16} - \left( \frac{1}{16} (-1) - \frac{1}{16} (1) \right) = \frac{\pi}{16} + \frac{1}{16} + \frac{1}{16} = \frac{\pi + 1}{16} ]
Step 2
Answer
To find the volume ( V ) of the solid of revolution generated by rotating region R around the x-axis, we can use the disk method:
[ V = \pi \int_{0}^{\frac{\pi}{4}} \left( \sqrt{x} \sin 2x \right)^2 , dx ]
This becomes:
[ V = \pi \int_{0}^{\frac{\pi}{4}} x \sin^2 2x , dx ]
Using the identity, ( \sin^2 2x = \frac{1 - \cos 4x}{2} ), we can reformulate the integral:
[ V = \frac{\pi}{2} \int_{0}^{\frac{\pi}{4}} x(1 - \cos 4x) , dx ]
Now, evaluate part by part:
For ( \int_{0}^{\frac{\pi}{4}} x , dx = \left[ \frac{x^2}{2} \right]_{0}^{\frac{\pi}{4}} = \frac{\left( \frac{\pi}{4} \right)^2}{2} = \frac{\pi^2}{32} )
For ( \int_{0}^{\frac{\pi}{4}} x \cos 4x , dx ), we have already calculated this earlier:
[ \int x \cos 4x , dx = \frac{\pi + 1}{16} ]
Putting it all together, the volume V becomes:
[ V = \frac{\pi}{2} \left( \frac{\pi^2}{32} - \frac{1}{16} \right) = \frac{\pi}{2} \left( \frac{\pi^2 - 2}{32} \right) = \frac{\pi (\pi^2 - 2)}{64} ]
Report Improved Results
Recommend to friends
Students Supported
Questions answered