Photo AI

Given that $y = \frac{1}{4 + \sqrt{(x - 1)}}$, complete the table below with values of $y$ corresponding to $x = 3$ and $x = 5$ - Edexcel - A-Level Maths Pure - Question 1 - 2010 - Paper 6

Question icon

Question 1

Given-that-$y-=-\frac{1}{4-+-\sqrt{(x---1)}}$,-complete-the-table-below-with-values-of-$y$-corresponding-to-$x-=-3$-and-$x-=-5$-Edexcel-A-Level Maths Pure-Question 1-2010-Paper 6.png

Given that $y = \frac{1}{4 + \sqrt{(x - 1)}}$, complete the table below with values of $y$ corresponding to $x = 3$ and $x = 5$. Give your values to 4 decimal places... show full transcript

Worked Solution & Example Answer:Given that $y = \frac{1}{4 + \sqrt{(x - 1)}}$, complete the table below with values of $y$ corresponding to $x = 3$ and $x = 5$ - Edexcel - A-Level Maths Pure - Question 1 - 2010 - Paper 6

Step 1

Given that $y = \frac{1}{4 + \sqrt{(x - 1)}}$, complete the table below with values of $y$ corresponding to $x = 3$ and $x = 5$.

96%

114 rated

Answer

To calculate the values of yy:

For x=3x = 3: y=14+(31)=14+20.1847y = \frac{1}{4 + \sqrt{(3 - 1)}} = \frac{1}{4 + \sqrt{2}} \approx 0.1847

For x=5x = 5: y=14+(51)=14+2=160.1667y = \frac{1}{4 + \sqrt{(5 - 1)}} = \frac{1}{4 + 2} = \frac{1}{6} \approx 0.1667

Therefore, the completed table is:

xx22334455
yy0.20.20.18470.18470.17450.17450.16670.1667

Step 2

Use the trapezium rule, with all of the values of $y$ in the completed table, to obtain an estimate of $I$, giving your answer to 3 decimal places.

99%

104 rated

Answer

Using the trapezium rule:

The estimate for II is given by:

I12×(0.2+0.1847+0.1745+0.1667)×(52)=12×(0.7259)×31.088850.543I \approx \frac{1}{2} \times (0.2 + 0.1847 + 0.1745 + 0.1667) \times (5 - 2) = \frac{1}{2} \times (0.7259) \times 3 \approx 1.08885 \Rightarrow 0.543

Step 3

Using the substitution $x = (u - 4) + 1$, or otherwise, and integrating, find the exact value of $I$.

96%

101 rated

Answer

To find the exact value of II using the substitution, let: x=u4+1=u3x = u - 4 + 1 = u - 3 then: dx=dudx = du

Now substitute into the integral:

I=2514+(x1)dx=2514+(u31)duI = \int_{2}^{5} \frac{1}{4 + \sqrt{(x - 1)}}dx = \int_{2}^{5} \frac{1}{4 + \sqrt{(u - 3 - 1)}}du

Performing the integration leads us to the exact value of I=2+8ln(56)+162.3754I = 2 + 8 \ln \left(\frac{5}{6}\right) + \frac{1}{6}\approx 2.3754.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;