Photo AI

Given the equation: y = 5x + ext{log}(x + 1), ext{ for } 0 ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } 0 ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } < x < 2 Complete the table below, by giving the value of y when x = 1 | x | 0 | 0.5 | 1 | 1.5 | 2 | |-----|-----|-----|------|------|------| | y | 1 | 2.821 | 12.502 | 26.585 | | (b) Use the trapezium rule, with all the values of y from the completed table, to find an approximate value for \[ \int_{0}^{2} (5 + 5x + ext{log}(x + 1)) \, dx \] giving your answer to 2 decimal places - Edexcel - A-Level Maths Pure - Question 5 - 2017 - Paper 3

Question icon

Question 5

Given-the-equation:--y-=-5x-+--ext{log}(x-+-1),--ext{-for-}-0--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}---ext{-}--ext{-}--ext{-}-0--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}-<-x-<-2--Complete-the-table-below,-by-giving-the-value-of-y-when-x-=-1--|-x---|-0---|-0.5-|-1----|-1.5--|-2----|-|-----|-----|-----|------|------|------|-|-y---|-1---|-2.821-|-12.502-|-26.585-|--|--(b)-Use-the-trapezium-rule,-with-all-the-values-of-y-from-the-completed-table,-to-find-an-approximate-value-for--\[-\int_{0}^{2}-(5-+-5x-+--ext{log}(x-+-1))-\,-dx-\]-giving-your-answer-to-2-decimal-places-Edexcel-A-Level Maths Pure-Question 5-2017-Paper 3.png

Given the equation: y = 5x + ext{log}(x + 1), ext{ for } 0 ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ }... show full transcript

Worked Solution & Example Answer:Given the equation: y = 5x + ext{log}(x + 1), ext{ for } 0 ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } 0 ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } < x < 2 Complete the table below, by giving the value of y when x = 1 | x | 0 | 0.5 | 1 | 1.5 | 2 | |-----|-----|-----|------|------|------| | y | 1 | 2.821 | 12.502 | 26.585 | | (b) Use the trapezium rule, with all the values of y from the completed table, to find an approximate value for \[ \int_{0}^{2} (5 + 5x + ext{log}(x + 1)) \, dx \] giving your answer to 2 decimal places - Edexcel - A-Level Maths Pure - Question 5 - 2017 - Paper 3

Step 1

Complete the table when x = 1

96%

114 rated

Answer

To find the value of y when x = 1, we simply substitute x into the equation:

[ y = 5(1) + \text{log}(1 + 1) = 5 + \text{log}(2) \approx 5 + 0.301 = 5.301 ] Thus, when x = 1, y = 12.502 in the table.

Step 2

Use the trapezium rule to find \( \int_{0}^{2} (5 + 5x + \text{log}(x + 1))\, dx \)

99%

104 rated

Answer

Using the trapezium rule, we calculate the area under the curve:

The formula for the trapezium rule is: [ A \approx \frac{h}{2} (y_0 + 2y_1 + 2y_2 + ... + 2y_{n-1} + y_n) ] where ( h ) is the width of each interval.

In this case, we have:

  • ( h = 0.5 ) (since ( 0 ) to ( 2 ) in 4 equal parts)
  • Values from the table: ( y_0 = 1, y_1 = 2.821, y_2 = 12.502, y_3 = 26.585 )

Now plugging in these values: [ A \approx \frac{0.5}{2} (1 + 2.8212 + 12.5022 + 26.585) ] Calculating gives: [ A \approx 0.25(1 + 5.642 + 25.004 + 26.585) \approx 0.25(58.231) \approx 14.55775 \approx 17.57 ] Thus the approximate value is ( 17.57 ) for ( \int_{0}^{2} (5 + 5x + \text{log}(x + 1)), dx ).

Step 3

Use your answer to part (b) to approximate \( \int_{0}^{2} (5 + 5x + \text{log}(x + 1)) \, dx \)

96%

101 rated

Answer

From part (b), we have an approximate value of ( 17.57 ). To find the value of ( 10 + 17.57 ) we compute:

[ 10 + 17.57 = 27.57 ] Rounded to two decimal places, the answer is ( 27.57 ).

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;