Given the equation:
y = 5x + ext{log}(x + 1), ext{ for } 0 ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } 0 ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } < x < 2
Complete the table below, by giving the value of y when x = 1
| x | 0 | 0.5 | 1 | 1.5 | 2 |
|-----|-----|-----|------|------|------|
| y | 1 | 2.821 | 12.502 | 26.585 | |
(b) Use the trapezium rule, with all the values of y from the completed table, to find an approximate value for
\[ \int_{0}^{2} (5 + 5x + ext{log}(x + 1)) \, dx \]
giving your answer to 2 decimal places - Edexcel - A-Level Maths Pure - Question 5 - 2017 - Paper 3

Question 5
![Given-the-equation:--y-=-5x-+--ext{log}(x-+-1),--ext{-for-}-0--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}---ext{-}--ext{-}--ext{-}-0--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}-<-x-<-2--Complete-the-table-below,-by-giving-the-value-of-y-when-x-=-1--|-x---|-0---|-0.5-|-1----|-1.5--|-2----|-|-----|-----|-----|------|------|------|-|-y---|-1---|-2.821-|-12.502-|-26.585-|--|--(b)-Use-the-trapezium-rule,-with-all-the-values-of-y-from-the-completed-table,-to-find-an-approximate-value-for--\[-\int_{0}^{2}-(5-+-5x-+--ext{log}(x-+-1))-\,-dx-\]-giving-your-answer-to-2-decimal-places-Edexcel-A-Level Maths Pure-Question 5-2017-Paper 3.png](https://cdn.simplestudy.io/assets/backend/uploads/question/MathsPure_2017_3_1_QP_3_2017 .jpg)
Given the equation:
y = 5x + ext{log}(x + 1), ext{ for } 0 ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ }... show full transcript
Worked Solution & Example Answer:Given the equation:
y = 5x + ext{log}(x + 1), ext{ for } 0 ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } 0 ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } < x < 2
Complete the table below, by giving the value of y when x = 1
| x | 0 | 0.5 | 1 | 1.5 | 2 |
|-----|-----|-----|------|------|------|
| y | 1 | 2.821 | 12.502 | 26.585 | |
(b) Use the trapezium rule, with all the values of y from the completed table, to find an approximate value for
\[ \int_{0}^{2} (5 + 5x + ext{log}(x + 1)) \, dx \]
giving your answer to 2 decimal places - Edexcel - A-Level Maths Pure - Question 5 - 2017 - Paper 3
Complete the table when x = 1

Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To find the value of y when x = 1, we simply substitute x into the equation:
[ y = 5(1) + \text{log}(1 + 1) = 5 + \text{log}(2) \approx 5 + 0.301 = 5.301 ]
Thus, when x = 1, y = 12.502 in the table.
Use the trapezium rule to find \( \int_{0}^{2} (5 + 5x + \text{log}(x + 1))\, dx \)

Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Using the trapezium rule, we calculate the area under the curve:
The formula for the trapezium rule is:
[ A \approx \frac{h}{2} (y_0 + 2y_1 + 2y_2 + ... + 2y_{n-1} + y_n) ]
where ( h ) is the width of each interval.
In this case, we have:
- ( h = 0.5 ) (since ( 0 ) to ( 2 ) in 4 equal parts)
- Values from the table: ( y_0 = 1, y_1 = 2.821, y_2 = 12.502, y_3 = 26.585 )
Now plugging in these values:
[ A \approx \frac{0.5}{2} (1 + 2.8212 + 12.5022 + 26.585) ]
Calculating gives:
[ A \approx 0.25(1 + 5.642 + 25.004 + 26.585) \approx 0.25(58.231) \approx 14.55775 \approx 17.57 ]
Thus the approximate value is ( 17.57 ) for ( \int_{0}^{2} (5 + 5x + \text{log}(x + 1)), dx ).
Use your answer to part (b) to approximate \( \int_{0}^{2} (5 + 5x + \text{log}(x + 1)) \, dx \)

Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
From part (b), we have an approximate value of ( 17.57 ).
To find the value of ( 10 + 17.57 ) we compute:
[ 10 + 17.57 = 27.57 ]
Rounded to two decimal places, the answer is ( 27.57 ).
Join the A-Level students using SimpleStudy...
97% of StudentsReport Improved Results
98% of StudentsRecommend to friends
100,000+ Students Supported
1 Million+ Questions answered
;