Photo AI

y = 5x + log_e(x + 1), 0 ≤ x < 2 Complete the table below, by giving the value of y when x = 1 | x | 0 | 0.5 | 1 | 1.5 | 2 | |-----|-----|-------|---------|-------|--------| | y | 1 | 2.821 | 12.502 | 26.585| | - Edexcel - A-Level Maths Pure - Question 4 - 2017 - Paper 3

Question icon

Question 4

y-=-5x-+-log_e(x-+-1),--0-≤-x-<-2--Complete-the-table-below,-by-giving-the-value-of-y-when-x-=-1--|-x---|-0---|-0.5---|-1-------|-1.5---|-2------|-|-----|-----|-------|---------|-------|--------|-|-y---|-1---|-2.821-|-12.502--|-26.585|--------|-Edexcel-A-Level Maths Pure-Question 4-2017-Paper 3.png

y = 5x + log_e(x + 1), 0 ≤ x < 2 Complete the table below, by giving the value of y when x = 1 | x | 0 | 0.5 | 1 | 1.5 | 2 | |-----|-----|-----... show full transcript

Worked Solution & Example Answer:y = 5x + log_e(x + 1), 0 ≤ x < 2 Complete the table below, by giving the value of y when x = 1 | x | 0 | 0.5 | 1 | 1.5 | 2 | |-----|-----|-------|---------|-------|--------| | y | 1 | 2.821 | 12.502 | 26.585| | - Edexcel - A-Level Maths Pure - Question 4 - 2017 - Paper 3

Step 1

Complete the table below, by giving the value of y when x = 1

96%

114 rated

Answer

To find y when x = 1, we substitute x in the equation:

y=5(1)+extloge(1+1)y = 5(1) + ext{log}_e(1 + 1)

Since log_e(1 + 1) = log_e(2), we have:

y=5+extloge(2)5+0.693=5.693y = 5 + ext{log}_e(2) \approx 5 + 0.693 = 5.693

So, the completed table with y values becomes:

x00.511.52
y12.8215.69312.50226.585

Step 2

Use the trapezium rule, with all the values of y from the completed table, to find an approximate value for $\, \int_0^2 (5 + log_e(x + 1)) \, dx$

99%

104 rated

Answer

Using the trapezium rule:

extArea=h2(y0+2y1+2y2+y3) ext{Area} = \frac{h}{2} (y_0 + 2y_1 + 2y_2 + y_3)

where h = 0.5, y_0 = 1, y_1 = 2.821, y_2 = 5.693, y_3 = 12.502:

Calculating the area:

=0.52(1+2(2.821)+2(5.693)+12.502)= \frac{0.5}{2} (1 + 2(2.821) + 2(5.693) + 12.502)

=0.25(1+5.642+11.386+12.502)= 0.25 (1 + 5.642 + 11.386 + 12.502)

=0.25(30.530)7.6325= 0.25 (30.530) \approx 7.6325

Thus, the approximate value for the integral is:

7.63 (to 2 decimal places).

Step 3

Use your answer to part (b) to find an approximate value for $\, \int_0^2 (5 + 5x + log_e(x + 1)) \, dx$

96%

101 rated

Answer

From part (b), we have:

02(5+loge(x+1))dx7.63\int_0^2 (5 + log_e(x + 1)) \, dx \approx 7.63

To find:

02(5+5x+loge(x+1))dx\int_0^2 (5 + 5x + log_e(x + 1)) \, dx,

we can decompose it:

=025dx+025xdx+02loge(x+1)dx= \int_0^2 5 \, dx + \int_0^2 5x \, dx + \int_0^2 log_e(x + 1) \, dx

We know that:

  1. 025dx=5x02=10\int_0^2 5 \, dx = 5x \Big|_0^2 = 10.
  2. 025xdx=5x2202=10\int_0^2 5x \, dx = \frac{5x^2}{2} \Big|_0^2 = 10.

Thus, the whole integral becomes:

10+10+7.63=27.6310 + 10 + 7.63 = 27.63

So, the approximate value is:

27.63 (to 2 decimal places).

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;