Photo AI

The curve shown in Figure 3 has parametric equations $x = 6 \, ext{sin} \, t$ $y = 5 \, ext{sin} \, 2t$ $0 \leq t \leq \frac{\pi}{2}$ The region $R$, shown shaded in Figure 3, is bounded by the curve and the x-axis - Edexcel - A-Level Maths Pure - Question 14 - 2020 - Paper 2

Question icon

Question 14

The-curve-shown-in-Figure-3-has-parametric-equations--$x-=-6-\,--ext{sin}-\,-t$-$y-=-5-\,--ext{sin}-\,-2t$---$0-\leq-t-\leq-\frac{\pi}{2}$--The-region-$R$,-shown-shaded-in-Figure-3,-is-bounded-by-the-curve-and-the-x-axis-Edexcel-A-Level Maths Pure-Question 14-2020-Paper 2.png

The curve shown in Figure 3 has parametric equations $x = 6 \, ext{sin} \, t$ $y = 5 \, ext{sin} \, 2t$ $0 \leq t \leq \frac{\pi}{2}$ The region $R$, shown sha... show full transcript

Worked Solution & Example Answer:The curve shown in Figure 3 has parametric equations $x = 6 \, ext{sin} \, t$ $y = 5 \, ext{sin} \, 2t$ $0 \leq t \leq \frac{\pi}{2}$ The region $R$, shown shaded in Figure 3, is bounded by the curve and the x-axis - Edexcel - A-Level Maths Pure - Question 14 - 2020 - Paper 2

Step 1

Show that the area of R is given by $$\int_{0}^{\frac{\pi}{2}} 60 \text{sin} \; t \text{cos}^2 \; t \, dt$$

96%

114 rated

Answer

To derive the area of the region RR, we utilize the formula for the area under a parametric curve given by: A=abydxdtdtA = \int_{a}^{b} y \, \frac{dx}{dt} \, dt

Substituting the parametric equations: y=5sin  2tanddxdt=6cos  ty = 5 \text{sin} \; 2t \quad \text{and} \quad \frac{dx}{dt} = 6 \text{cos} \; t

Thus, the area can be expressed as: A=0π25sin  2t6cos  tdt=0π230sin  2tcos  tdtA = \int_{0}^{\frac{\pi}{2}} 5 \text{sin} \; 2t \cdot 6 \text{cos} \; t \, dt = \int_{0}^{\frac{\pi}{2}} 30 \text{sin} \; 2t \text{cos} \; t \, dt

Using the double angle identity, we have: sin  2t=2sin  tcos  t\text{sin} \; 2t = 2 \text{sin} \; t \text{cos} \; t

Thus, substituting it in, we get: A=0π260sin  tcos2  tdtA = \int_{0}^{\frac{\pi}{2}} 60 \text{sin} \; t \text{cos}^2 \; t \, dt

Step 2

Hence show, by algebraic integration, that the area of R is exactly 20.

99%

104 rated

Answer

To find the area, we need to evaluate the integral:

60sin  tcos2  tdt\int 60 \text{sin} \; t \text{cos}^2 \; t \, dt

Using the identity for cos2  t\text{cos}^2 \; t, we can write: cos2  t=1+cos  2t2\text{cos}^2 \; t = \frac{1 + \text{cos} \; 2t}{2}

Thus, the integral becomes: 60sin  t(1+cos  2t2)dt=30sin  tdt+30sin  tcos  2tdt\int 60 \text{sin} \; t \left( \frac{1 + \text{cos} \; 2t}{2} \right) \, dt = 30 \int \text{sin} \; t \, dt + 30 \int \text{sin} \; t \text{cos} \; 2t \, dt

Evaluating these integrals gives:

  • For the first integral: sin  tdt=cos  t\int \text{sin} \; t \, dt = -\text{cos} \; t
  • For the second integral, use integration by parts or substitution methods to solve.

After evaluating the definite integral from 00 to π2\frac{\pi}{2}, combine the results to find that the area A=20A = 20.

Step 3

calculate the width of the walkway

96%

101 rated

Answer

In Figure 4, we are given that the vertical wall of the dam is 4.2 meters high. Taking into account the parametric equations, we equate the height at point MM to:

y=5sin  2t=4.2y = 5 \text{sin} \; 2t = 4.2

Solving for tt, we first isolate sin  2t\text{sin} \; 2t: sin  2t=4.25=0.84\text{sin} \; 2t = \frac{4.2}{5} = 0.84

Thus, 2t=sin1(0.84)2t = \text{sin}^{-1}(0.84)

Consequently, the angle can be calculated: t=12sin1(0.84)t = \frac{1}{2} \text{sin}^{-1}(0.84)

Now, substituting back into the parametric equations to determine xx and ultimately the width MNMN: x=6sin  tx = 6 \text{sin} \; t

Within the parameters gives: MN=width=6sin  (12sin1(0.84))MN = \text{width} = 6 \text{sin} \; \left( \frac{1}{2} \text{sin}^{-1}(0.84) \right)

Calculating this will yield the desired width of the walkway.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;