Photo AI

Show that the equation 3sin²x + 7sin x = cos²x - 4 can be written in the form 4sin²x + 7sin x + 3 = 0 Hence solve, for 0 ≤ x < 360°, 3sin²x + 7sin x = cos²x - 4 giving your answers to 1 decimal place where appropriate. - Edexcel - A-Level Maths Pure - Question 9 - 2011 - Paper 3

Question icon

Question 9

Show-that-the-equation-3sin²x-+-7sin-x-=-cos²x---4-can-be-written-in-the-form-4sin²x-+-7sin-x-+-3-=-0--Hence-solve,-for-0-≤-x-<-360°,-3sin²x-+-7sin-x-=-cos²x---4-giving-your-answers-to-1-decimal-place-where-appropriate.-Edexcel-A-Level Maths Pure-Question 9-2011-Paper 3.png

Show that the equation 3sin²x + 7sin x = cos²x - 4 can be written in the form 4sin²x + 7sin x + 3 = 0 Hence solve, for 0 ≤ x < 360°, 3sin²x + 7sin x = cos²x - 4 giv... show full transcript

Worked Solution & Example Answer:Show that the equation 3sin²x + 7sin x = cos²x - 4 can be written in the form 4sin²x + 7sin x + 3 = 0 Hence solve, for 0 ≤ x < 360°, 3sin²x + 7sin x = cos²x - 4 giving your answers to 1 decimal place where appropriate. - Edexcel - A-Level Maths Pure - Question 9 - 2011 - Paper 3

Step 1

Show that the equation can be written in the form 4sin²x + 7sin x + 3 = 0

96%

114 rated

Answer

To rewrite the equation, we start with

3sin2x+7sinx=cos2x43sin²x + 7sin x = cos²x - 4

Using the identity cos2x=1sin2xcos²x = 1 - sin²x, we substitute for cos2xcos²x:

3sin2x+7sinx=(1sin2x)43sin²x + 7sin x = (1 - sin²x) - 4

Now, simplifying the right side:

3sin2x+7sinx=sin2x33sin²x + 7sin x = -sin²x - 3

Adding sin2x+3sin²x + 3 to both sides results in:

3sin2x+sin2x+7sinx+3=03sin²x + sin²x + 7sin x + 3 = 0

Combining like terms gives:

4sin2x+7sinx+3=04sin²x + 7sin x + 3 = 0

Therefore, we have shown that the equation can be expressed in the required form.

Step 2

Hence solve, for 0 ≤ x < 360°, 3sin²x + 7sin x = cos²x - 4

99%

104 rated

Answer

From the previous step, we identified the equation:

4sin2x+7sinx+3=04sin²x + 7sin x + 3 = 0

We can use the quadratic formula:

sinx=b±b24ac2asin x = \frac{-b \pm \sqrt{b² - 4ac}}{2a}

For our equation, where

  • a=4a = 4,
  • b=7b = 7,
  • c=3c = 3,

This gives us:

sinx=7±(7)24(4)(3)2(4)sin x = \frac{-7 \pm \sqrt{(7)² - 4(4)(3)}}{2(4)}

Calculating the discriminant:

(7)24(4)(3)=4948=1(7)² - 4(4)(3) = 49 - 48 = 1

Thus,

sinx=7±18sin x = \frac{-7 \pm 1}{8}

This yields two solutions:

  1. sinx=68=0.75sin x = \frac{-6}{8} = -0.75
  2. sinx=88=1sin x = \frac{-8}{8} = -1

Now we find the angles:

  • For sinx=0.75sin x = -0.75, the reference angle is: x=180°+48.59°,extandx = 180° + 48.59°, ext{and} x=360°48.59°x = 360° - 48.59° This gives: x228.6° and 311.4°x \approx 228.6° \text{ and } 311.4°
  • For sinx=1sin x = -1: x=270°x = 270°

Thus, the solutions in the range 0x<360°0 ≤ x < 360° are:

  • x228.6°x ≈ 228.6°
  • x311.4°x ≈ 311.4°
  • x=270°x = 270°

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;