Photo AI

9. (a) Prove that sin 2x - tan x = tan x cos 2x, x ≠ (2n + 1)90°, n ∈ Z (4) (b) Given that x ≠ 90° and x ≠ 270°, solve, for 0 ≤ x < 360°, sin 2x - tan x = 3 tan x sin x - Edexcel - A-Level Maths Pure - Question 9 - 2017 - Paper 4

Question icon

Question 9

9.-(a)-Prove-that------------sin-2x---tan-x-=-tan-x-cos-2x,-x-≠-(2n-+-1)90°,-n-∈-Z--------(4)----(b)-Given-that-x-≠-90°-and-x-≠-270°,-solve,-for-0-≤-x-<-360°,------------sin-2x---tan-x-=-3-tan-x-sin-x-Edexcel-A-Level Maths Pure-Question 9-2017-Paper 4.png

9. (a) Prove that sin 2x - tan x = tan x cos 2x, x ≠ (2n + 1)90°, n ∈ Z (4) (b) Given that x ≠ 90° and x ≠ 270°, solve, for 0 ≤ x < 360°, ... show full transcript

Worked Solution & Example Answer:9. (a) Prove that sin 2x - tan x = tan x cos 2x, x ≠ (2n + 1)90°, n ∈ Z (4) (b) Given that x ≠ 90° and x ≠ 270°, solve, for 0 ≤ x < 360°, sin 2x - tan x = 3 tan x sin x - Edexcel - A-Level Maths Pure - Question 9 - 2017 - Paper 4

Step 1

Prove that sin 2x - tan x = tan x cos 2x, x ≠ (2n + 1)90°

96%

114 rated

Answer

To prove the identity, we start from the left-hand side:

extLHS=sin2xtanx ext{LHS} = sin 2x - tan x

Using the double angle formula for sine, we have:

sin2x=2sinxcosxsin 2x = 2sin x cos x

Thus, substituting this in:

extLHS=2sinxcosxtanx ext{LHS} = 2sin x cos x - tan x

Now expressing tangent in terms of sine and cosine:

tanx=sinxcosxtan x = \frac{sin x}{cos x}

This gives:

extLHS=2sinxcosxsinxcosx ext{LHS} = 2sin x cos x - \frac{sin x}{cos x}

Finding a common denominator:

=2sinxcos2xsinxcosx= \frac{2sin x cos^2 x - sin x}{cos x}

Factoring out sin x:

=sinx(2cos2x1)cosx= \frac{sin x(2cos^2 x - 1)}{cos x}

Now applying the identity (cos 2x = 2cos^2 x - 1):

=sinxcos2xcosx= \frac{sin x cos 2x}{cos x}

Thus, we have:

extLHS=tanxcos2x=extRHS ext{LHS} = tan x cos 2x = ext{RHS}

The identity is therefore proven.

Step 2

Given that x ≠ 90° and x ≠ 270°, solve, for 0 ≤ x < 360°, sin 2x - tan x = 3 tan x sin x

99%

104 rated

Answer

Starting from the equation:

sin2xtanx=3tanxsinxsin 2x - tan x = 3 tan x sin x

Substituting (sin 2x = 2sin x cos x) gives:

2sinxcosxsinxcosx=3sinxcosxsinx2sin x cos x - \frac{sin x}{cos x} = 3 \frac{sin x}{cos x} sin x

Multiplying through by (cos x) to eliminate the denominator:

2sinxcos2xsinx=3sin2x2sin x cos^2 x - sin x = 3sin^2 x

Rearranging yields:

2sinxcos2x3sin2xsinx=02sin x cos^2 x - 3sin^2 x - sin x = 0

Factoring out sin x:

sinx(2cos2x3sinx1)=0sin x(2cos^2 x - 3sin x - 1) = 0

Therefore, (sin x = 0) gives solutions at:

  • (x = 0°, 180°)

For the quadratic equation in terms of (sin x), using the quadratic formula:

ds=b±b24ac2ads = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Where:

  • (a = -3, b = -1, c = 2)

Calculating the discriminant (b^2 - 4ac):

(1)24(3)(2)=1+24=25(-1)^2 - 4(-3)(2) = 1 + 24 = 25

Thus:

sinx=1±56sin x = \frac{1 \pm 5}{-6}

This gives:

  • (sin x = -\frac{2}{3}) (not valid in the given range)
  • (sin x = \frac{1}{3})

Then, using (sin^{-1}(\frac{1}{3})) gives:

  • Approximate values of (x = 19.1°) and its supplementary angle in the range (0 ≤ x < 360°) is:
  • (x = 180° - 19.1° = 160.9°)

Thus, the solutions are:

  • (x = 0°, 180°, 19.1°, 160.9°)

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;