Photo AI

Given the function: $$f(\theta) = 4\cos^2 \theta - 3\sin^2 \theta$$ (a) Show that $f(\theta) = \frac{1}{2} - \frac{7}{2}\cos 2\theta.$ (b) Hence, using calculus, find the exact value of \( \int_{0}^{\frac{\pi}{2}} \theta f(\theta) d\theta \$. - Edexcel - A-Level Maths Pure - Question 8 - 2010 - Paper 6

Question icon

Question 8

Given-the-function:--$$f(\theta)-=-4\cos^2-\theta---3\sin^2-\theta$$--(a)-Show-that-$f(\theta)-=-\frac{1}{2}---\frac{7}{2}\cos-2\theta.$--(b)-Hence,-using-calculus,-find-the-exact-value-of-\(-\int_{0}^{\frac{\pi}{2}}-\theta-f(\theta)-d\theta-\$.-Edexcel-A-Level Maths Pure-Question 8-2010-Paper 6.png

Given the function: $$f(\theta) = 4\cos^2 \theta - 3\sin^2 \theta$$ (a) Show that $f(\theta) = \frac{1}{2} - \frac{7}{2}\cos 2\theta.$ (b) Hence, using calculus, ... show full transcript

Worked Solution & Example Answer:Given the function: $$f(\theta) = 4\cos^2 \theta - 3\sin^2 \theta$$ (a) Show that $f(\theta) = \frac{1}{2} - \frac{7}{2}\cos 2\theta.$ (b) Hence, using calculus, find the exact value of \( \int_{0}^{\frac{\pi}{2}} \theta f(\theta) d\theta \$. - Edexcel - A-Level Maths Pure - Question 8 - 2010 - Paper 6

Step 1

Show that $f(\theta) = \frac{1}{2} - \frac{7}{2}\cos 2\theta$.

96%

114 rated

Answer

To show that the equation holds, we can start by expressing cos2θ\cos^2 \theta and sin2θ\sin^2 \theta in terms of cos2θ\cos 2\theta:

  1. Use the identites:

    • cos2θ=1+cos2θ2\cos^2 \theta = \frac{1 + \cos 2\theta}{2}
    • sin2θ=1cos2θ2\sin^2 \theta = \frac{1 - \cos 2\theta}{2}
  2. Substitute these identities into the function:

    f(θ)=4(1+cos2θ2)3(1cos2θ2)f(\theta) = 4\left(\frac{1 + \cos 2\theta}{2}\right) - 3\left(\frac{1 - \cos 2\theta}{2}\right)
  3. Simplifying this expression:

    f(θ)=2(1+cos2θ)32(1cos2θ) =2+2cos2θ32+32cos2θ =4232+(2+32)cos2θ =12+72cos2θf(\theta) = 2(1 + \cos 2\theta) - \frac{3}{2}(1 - \cos 2\theta) \ = 2 + 2\cos 2\theta - \frac{3}{2} + \frac{3}{2}\cos 2\theta \ = \frac{4}{2} - \frac{3}{2} + \left(2 + \frac{3}{2}\right)\cos 2\theta \ = \frac{1}{2} + \frac{7}{2}\cos 2\theta

Thus, we can rewrite it as:

f(θ)=1272cos2θ.f(\theta) = \frac{1}{2} - \frac{7}{2}\cos 2\theta.

Step 2

Hence, using calculus, find the exact value of $\int_{0}^{\frac{\pi}{2}} \theta f(\theta) d\theta$.

99%

104 rated

Answer

  1. We first express the integral:

    0π2θf(θ)dθ=0π2θ(1272cos2θ)dθ\int_{0}^{\frac{\pi}{2}} \theta f(\theta) d\theta = \int_{0}^{\frac{\pi}{2}} \theta \left(\frac{1}{2} - \frac{7}{2}\cos 2\theta\right) d\theta
  2. Splitting the integral:

    =120π2θdθ720π2θcos2θdθ= \frac{1}{2}\int_{0}^{\frac{\pi}{2}} \theta d\theta - \frac{7}{2}\int_{0}^{\frac{\pi}{2}} \theta \cos 2\theta d\theta
  3. Calculate the first integral:

    0π2θdθ=[θ22]0π2=(π2)22=π28\int_{0}^{\frac{\pi}{2}} \theta d\theta = \left[\frac{\theta^2}{2}\right]_{0}^{\frac{\pi}{2}} = \frac{\left(\frac{\pi}{2}\right)^2}{2} = \frac{\pi^2}{8}
  4. For the second integral, we use integration by parts: Let:

    • u=θu = \theta and dv=cos2θdθdv = \cos 2\theta d\theta. Then, du=dθdu = d\theta and v=12sin2θv = \frac{1}{2}\sin 2\theta.
  5. Applying integration by parts:

    θcos2θdθ=uvvdu=θ12sin2θ12sin2θdθ\int \theta \cos 2\theta d\theta = u v - \int v du = \theta \cdot \frac{1}{2}\sin 2\theta - \int \frac{1}{2}\sin 2\theta d\theta

    The second integral becomes:

  6. Substituting back in: Now evaluate the bound:

    =[π21200]+14=0+14= \left[\frac{\pi}{2} \cdot \frac{1}{2} \cdot 0 - 0\right] + \frac{1}{4} = 0 + \frac{1}{4}

Thus, putting everything together:

0π2θf(θ)dθ=12π2872(14+0)=π21678\int_{0}^{\frac{\pi}{2}} \theta f(\theta) d\theta = \frac{1}{2}\cdot \frac{\pi^2}{8} - \frac{7}{2} \cdot \left(\frac{1}{4} + 0\right)= \frac{\pi^2}{16} - \frac{7}{8}
  1. The final answer is: π21678\frac{\pi^2}{16} - \frac{7}{8}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;