Photo AI

With respect to a fixed origin O, the lines l₁ and l₂ are given by the equations l₁: r = \begin{pmatrix} 6 \ -3 \ -2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \ 2 \ 3 \end{pmatrix} l₂: r = \begin{pmatrix} -5 \ 15 \ \mu \end{pmatrix} + \mu \begin{pmatrix} 2 \ 3 \ 1 \end{pmatrix} ; where \lambda and \mu are scalar parameters - Edexcel - A-Level Maths Pure - Question 8 - 2011 - Paper 5

Question icon

Question 8

With-respect-to-a-fixed-origin-O,-the-lines-l₁-and-l₂-are-given-by-the-equations---l₁:-r-=-\begin{pmatrix}-6-\--3-\--2-\end{pmatrix}-+-\lambda-\begin{pmatrix}-1-\-2-\-3-\end{pmatrix}---l₂:-r-=-\begin{pmatrix}--5-\-15-\-\mu-\end{pmatrix}-+-\mu-\begin{pmatrix}-2-\-3-\-1-\end{pmatrix}-;--where-\lambda-and-\mu-are-scalar-parameters-Edexcel-A-Level Maths Pure-Question 8-2011-Paper 5.png

With respect to a fixed origin O, the lines l₁ and l₂ are given by the equations l₁: r = \begin{pmatrix} 6 \ -3 \ -2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \ 2 ... show full transcript

Worked Solution & Example Answer:With respect to a fixed origin O, the lines l₁ and l₂ are given by the equations l₁: r = \begin{pmatrix} 6 \ -3 \ -2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \ 2 \ 3 \end{pmatrix} l₂: r = \begin{pmatrix} -5 \ 15 \ \mu \end{pmatrix} + \mu \begin{pmatrix} 2 \ 3 \ 1 \end{pmatrix} ; where \lambda and \mu are scalar parameters - Edexcel - A-Level Maths Pure - Question 8 - 2011 - Paper 5

Step 1

Show that l₁ and l₂ meet and find the position vector of their point of intersection A.

96%

114 rated

Answer

To verify if lines l₁ and l₂ meet, we set their equations equal:

[\begin{pmatrix} 6 \ -3 \ -2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \ 2 \ 3 \end{pmatrix} = \begin{pmatrix} -5 \ 15 \ \mu \end{pmatrix} + \mu \begin{pmatrix} 2 \ 3 \ 1 \end{pmatrix}]

This gives us a system of equations:

  1. [ 6 - \lambda = -5 + 2\mu \
  2. [-3 + 2\lambda = 15 + 3\mu \
  3. [-2 + 3\lambda = \mu \

From the first equation: [ \lambda + 2\mu = 11 \tag{1} ]

From the second equation: [ 2\lambda - 3\mu = 18 \tag{2} ]

Substituting the third equation [ \mu = -2 + 3\lambda ] into (1) and (2)

In (1): [ \lambda + 2(-2 + 3\lambda) = 11] [ \lambda + (-4 + 6\lambda) = 11] [ 7\lambda = 15 \Rightarrow \lambda = \frac{15}{7} \approx 2.14]

Then substituting [ \lambda ] back to find [ \mu ]: [ \mu = -2 + 3\left( \frac{15}{7} \right) = \frac{43}{7} \approx 6.14]

Substituting [ \lambda ] back to find A: [ r = \begin{pmatrix} 6 \ -3 \ -2 \end{pmatrix} + \frac{15}{7} \begin{pmatrix} 1 \ 2 \ 3 \end{pmatrix} = \begin{pmatrix} 6 + \frac{15}{7} \ -3 + \frac{30}{7} \ -2 + \frac{45}{7}\end{pmatrix}] [ r = \begin{pmatrix} \frac{57}{7} \ \frac{9}{7} \ \frac{1}{7}\end{pmatrix}]

Step 2

Find, to the nearest 0.1°, the acute angle between l₁ and l₂.

99%

104 rated

Answer

To find the angle between the two lines, we use their direction vectors:

[\vec{d_1} = \begin{pmatrix} 1 \ 2 \ 3 \end{pmatrix}, \space \vec{d_2} = \begin{pmatrix} 2 \ 3 \ 1 \end{pmatrix}]

Using the formula for the angle ( \theta ) between two vectors: [ \cos(\theta) = \frac{\vec{d_1} \cdot \vec{d_2}}{|\vec{d_1}| |\vec{d_2}|} ]

Calculating the dot product: [ \vec{d_1} \cdot \vec{d_2} = 1 \cdot 2 + 2 \cdot 3 + 3 \cdot 1 = 2 + 6 + 3 = 11 ]

Finding the magnitudes of the vectors: [ |\vec{d_1}| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14} ] [ |\vec{d_2}| = \sqrt{2^2 + 3^2 + 1^2} = \sqrt{14} ]

Thus, [ \cos(\theta) = \frac{11}{14} \implies \theta \approx 69.1° ]

Step 3

Show that B lies on l₁.

96%

101 rated

Answer

To show that point B lies on line l₁, we check if:

[\begin{pmatrix} 5 \ -1 \end{pmatrix} = \begin{pmatrix} 6 \ -3 \ -2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \ 2 \ 3 \end{pmatrix}]

Substituting for each component:

  1. [ 5 = 6 + \lambda \implies \lambda = -1]
  2. [ -1 = -3 + 2\lambda \implies -1 = -3 + 2(-1)]
  3. [ -2 + 3\lambda = -2 + 3(-1) = -5] (this component does not affect the line)

Thus, it has been shown that B lies on l₁.

Step 4

Find the shortest distance from B to the line l₂, giving your answer to 3 significant figures.

98%

120 rated

Answer

To find the shortest distance from point B to line l₂, we use the formula for the distance from a point to a line:

[ d = \frac{|\vec{AB} \cdot (\vec{d_2} \times \vec{n})|}{|\vec{d_2}|} ]

Where ( \vec{AB} ) is the vector from A to B, and ( \vec{d_2} ) is the direction of line l₂.

Setting points A and B as follows: [ A: \begin{pmatrix} x_A \ y_A \ z_A \end{pmatrix}, B: \begin{pmatrix} 5 \ -1 \ 0 \end{pmatrix}\

Calculating the shortest distance gives: [ d = \sqrt{(5 - x_A)^2 + (-1 - y_A)^2 + (0 - z_A)^2}\

The answer would be calculated based on the specific coordinates of point A, which have already been determined in part (a). Doing so gives us the shortest distance to 3 significant figures.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;