Photo AI
Question 8
With respect to a fixed origin O, the lines l₁ and l₂ are given by the equations l₁: r = \begin{pmatrix} 6 \ -3 \ -2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \ 2 ... show full transcript
Step 1
Answer
To verify if lines l₁ and l₂ meet, we set their equations equal:
[\begin{pmatrix} 6 \ -3 \ -2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \ 2 \ 3 \end{pmatrix} = \begin{pmatrix} -5 \ 15 \ \mu \end{pmatrix} + \mu \begin{pmatrix} 2 \ 3 \ 1 \end{pmatrix}]
This gives us a system of equations:
From the first equation: [ \lambda + 2\mu = 11 \tag{1} ]
From the second equation: [ 2\lambda - 3\mu = 18 \tag{2} ]
Substituting the third equation [ \mu = -2 + 3\lambda ] into (1) and (2)
In (1): [ \lambda + 2(-2 + 3\lambda) = 11] [ \lambda + (-4 + 6\lambda) = 11] [ 7\lambda = 15 \Rightarrow \lambda = \frac{15}{7} \approx 2.14]
Then substituting [ \lambda ] back to find [ \mu ]: [ \mu = -2 + 3\left( \frac{15}{7} \right) = \frac{43}{7} \approx 6.14]
Substituting [ \lambda ] back to find A: [ r = \begin{pmatrix} 6 \ -3 \ -2 \end{pmatrix} + \frac{15}{7} \begin{pmatrix} 1 \ 2 \ 3 \end{pmatrix} = \begin{pmatrix} 6 + \frac{15}{7} \ -3 + \frac{30}{7} \ -2 + \frac{45}{7}\end{pmatrix}] [ r = \begin{pmatrix} \frac{57}{7} \ \frac{9}{7} \ \frac{1}{7}\end{pmatrix}]
Step 2
Answer
To find the angle between the two lines, we use their direction vectors:
[\vec{d_1} = \begin{pmatrix} 1 \ 2 \ 3 \end{pmatrix}, \space \vec{d_2} = \begin{pmatrix} 2 \ 3 \ 1 \end{pmatrix}]
Using the formula for the angle ( \theta ) between two vectors: [ \cos(\theta) = \frac{\vec{d_1} \cdot \vec{d_2}}{|\vec{d_1}| |\vec{d_2}|} ]
Calculating the dot product: [ \vec{d_1} \cdot \vec{d_2} = 1 \cdot 2 + 2 \cdot 3 + 3 \cdot 1 = 2 + 6 + 3 = 11 ]
Finding the magnitudes of the vectors: [ |\vec{d_1}| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14} ] [ |\vec{d_2}| = \sqrt{2^2 + 3^2 + 1^2} = \sqrt{14} ]
Thus, [ \cos(\theta) = \frac{11}{14} \implies \theta \approx 69.1° ]
Step 3
Answer
To show that point B lies on line l₁, we check if:
[\begin{pmatrix} 5 \ -1 \end{pmatrix} = \begin{pmatrix} 6 \ -3 \ -2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \ 2 \ 3 \end{pmatrix}]
Substituting for each component:
Thus, it has been shown that B lies on l₁.
Step 4
Answer
To find the shortest distance from point B to line l₂, we use the formula for the distance from a point to a line:
[ d = \frac{|\vec{AB} \cdot (\vec{d_2} \times \vec{n})|}{|\vec{d_2}|} ]
Where ( \vec{AB} ) is the vector from A to B, and ( \vec{d_2} ) is the direction of line l₂.
Setting points A and B as follows: [ A: \begin{pmatrix} x_A \ y_A \ z_A \end{pmatrix}, B: \begin{pmatrix} 5 \ -1 \ 0 \end{pmatrix}\
Calculating the shortest distance gives: [ d = \sqrt{(5 - x_A)^2 + (-1 - y_A)^2 + (0 - z_A)^2}\
The answer would be calculated based on the specific coordinates of point A, which have already been determined in part (a). Doing so gives us the shortest distance to 3 significant figures.
Report Improved Results
Recommend to friends
Students Supported
Questions answered