Photo AI

5. (a) Expand $\frac{1}{\sqrt{4-3x}}$, where $|x| < \frac{1}{3}$, in ascending powers of $x$ up to and including the term in $x^2$ - Edexcel - A-Level Maths Pure - Question 7 - 2008 - Paper 7

Question icon

Question 7

5.-(a)-Expand-$\frac{1}{\sqrt{4-3x}}$,-where-$|x|-<-\frac{1}{3}$,-in-ascending-powers-of-$x$-up-to-and-including-the-term-in-$x^2$-Edexcel-A-Level Maths Pure-Question 7-2008-Paper 7.png

5. (a) Expand $\frac{1}{\sqrt{4-3x}}$, where $|x| < \frac{1}{3}$, in ascending powers of $x$ up to and including the term in $x^2$. Simplify each term. (b) Hence, o... show full transcript

Worked Solution & Example Answer:5. (a) Expand $\frac{1}{\sqrt{4-3x}}$, where $|x| < \frac{1}{3}$, in ascending powers of $x$ up to and including the term in $x^2$ - Edexcel - A-Level Maths Pure - Question 7 - 2008 - Paper 7

Step 1

Expand $\frac{1}{\sqrt{4-3x}}$

96%

114 rated

Answer

To expand 143x\frac{1}{\sqrt{4-3x}}, we can rewrite it as: 14(13x4)=14113x4=12n=0(12n)(3x4)n\frac{1}{\sqrt{4(1 - \frac{3x}{4})}} = \frac{1}{\sqrt{4}} \cdot \frac{1}{\sqrt{1 - \frac{3x}{4}}} = \frac{1}{2} \sum_{n=0}^{\infty} {\frac{1}{2} \choose n} \left( -\frac{3x}{4} \right)^{n}

Using the binomial expansion, we calculate a few terms:

  • For n=0n=0: 11
  • For n=1n=1: 3x41=3x4-\frac{3x}{4} \cdot 1 = -\frac{3x}{4}
  • For n=2n=2: 1211!(3x4)2=9x232\frac{1}{2} \cdot \frac{1}{1!} \cdot \left(-\frac{3x}{4}\right)^{2} = \frac{9x^2}{32}

So, we have: 143x=12(13x4+9x232)=123x8+9x264\frac{1}{\sqrt{4-3x}} = \frac{1}{2} \left( 1 - \frac{3x}{4} + \frac{9x^2}{32} \right) = \frac{1}{2} - \frac{3x}{8} + \frac{9x^2}{64}

Step 2

Hence, or otherwise, find the first 3 terms in the expansion of $\sqrt{x+8}$

99%

104 rated

Answer

We can express x+8\sqrt{x+8} as: 8(1+x8)=221+x8\sqrt{8(1 + \frac{x}{8})} = 2\sqrt{2} \cdot \sqrt{1 + \frac{x}{8}}

Using the binomial expansion: 1+u1+12u18u2\sqrt{1 + u} \approx 1 + \frac{1}{2}u - \frac{1}{8}u^2 Where u=x8u = \frac{x}{8}, we have: 1+x81+12x818(x8)2=1+x16x2512\sqrt{1 + \frac{x}{8}} \approx 1 + \frac{1}{2} \cdot \frac{x}{8} - \frac{1}{8} \left(\frac{x}{8}\right)^{2} = 1 + \frac{x}{16} - \frac{x^2}{512}

Combining: 22(1+x16x2512)=22+22x1622x25122\sqrt{2} \left(1 + \frac{x}{16} - \frac{x^2}{512} \right) = 2\sqrt{2} + \frac{2\sqrt{2}x}{16} - \frac{2\sqrt{2}x^2}{512}

The first three terms are: 22,28x,2256x22\sqrt{2}, \frac{\sqrt{2}}{8}x, -\frac{\sqrt{2}}{256}x^2

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;