Photo AI

A curve has parametric equations $x = \tan^2 t, \quad y = \sin t, \quad 0 < t < \frac{\pi}{2}.$ (a) Find an expression for $\frac{dy}{dx}$ in terms of $t$ - Edexcel - A-Level Maths Pure - Question 8 - 2007 - Paper 8

Question icon

Question 8

A-curve-has-parametric-equations--$x-=-\tan^2-t,-\quad-y-=-\sin-t,-\quad-0-<-t-<-\frac{\pi}{2}.$--(a)-Find-an-expression-for-$\frac{dy}{dx}$-in-terms-of-$t$-Edexcel-A-Level Maths Pure-Question 8-2007-Paper 8.png

A curve has parametric equations $x = \tan^2 t, \quad y = \sin t, \quad 0 < t < \frac{\pi}{2}.$ (a) Find an expression for $\frac{dy}{dx}$ in terms of $t$. You nee... show full transcript

Worked Solution & Example Answer:A curve has parametric equations $x = \tan^2 t, \quad y = \sin t, \quad 0 < t < \frac{\pi}{2}.$ (a) Find an expression for $\frac{dy}{dx}$ in terms of $t$ - Edexcel - A-Level Maths Pure - Question 8 - 2007 - Paper 8

Step 1

Find an expression for $\frac{dy}{dx}$ in terms of $t$.

96%

114 rated

Answer

To find dydx\frac{dy}{dx}, we apply the chain rule:

  1. Compute dxdt\frac{dx}{dt}: dxdt=ddt(tan2t)=2tantsec2t.\frac{dx}{dt} = \frac{d}{dt}(\tan^2 t) = 2\tan t \sec^2 t.

  2. Compute dydt\frac{dy}{dt}: dydt=ddt(sint)=cost.\frac{dy}{dt} = \frac{d}{dt}(\sin t) = \cos t.

  3. Now, use the chain rule to find dydx\frac{dy}{dx}: dydx=dydtdxdt=cost2tantsec2t=cos3t2sint. \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\cos t}{2\tan t \sec^2 t} = \frac{\cos^3 t}{2\sin t}.

Step 2

Find an equation of the tangent to the curve at the point where $t = \frac{\pi}{4}$.

99%

104 rated

Answer

  1. First, find the coordinates at t=π4t = \frac{\pi}{4}: x=tan2(π4)=1,y=sin(π4)=22.x = \tan^2\left(\frac{\pi}{4}\right) = 1, \quad y = \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}.
    The point is (1,22).(1, \frac{\sqrt{2}}{2}).

  2. Now find dydx\frac{dy}{dx} at t=π4t = \frac{\pi}{4}: dydx=cos3(π4)2sin(π4)=(22)32(22)=22.\frac{dy}{dx} = \frac{\cos^3(\frac{\pi}{4})}{2\sin(\frac{\pi}{4})} = \frac{(\frac{\sqrt{2}}{2})^3}{2(\frac{\sqrt{2}}{2})} = \frac{\sqrt{2}}{2}.

  3. Use point-slope form of the equation of the tangent: y22=22(x1).y - \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2}(x - 1).
    Rearranging gives: $$y = \frac{\sqrt{2}}{2}x + \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}\right) = \frac{\sqrt{2}}{2}x - \frac{\sqrt{2}}{2}.$

Step 3

Find a cartesian equation of the curve in the form $y^2 = f(x)$.

96%

101 rated

Answer

From the parametric equations, we know:

  1. x=tan2tx = \tan^2 t implies tant=x\tan t = \sqrt{x}.

  2. Substituting tant\tan t into y=sinty = \sin t: y=sint=tant1+tan2t=x1+x.y = \sin t = \frac{\tan t}{\sqrt{1 + \tan^2 t}} = \frac{\sqrt{x}}{\sqrt{1 + x}}.

  3. Therefore, squaring both sides hence gives: y2=x1+x.y^2 = \frac{x}{1 + x}.
    Thus, the cartesian equation is: y2=x1+x.y^2 = \frac{x}{1 + x}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;