Photo AI

The curve C has equation $$x^2 + xy + y^2 - 4x - 5y + 1 = 0$$ (a) Use implicit differentiation to find \( \frac{dy}{dx} \) in terms of x and y - Edexcel - A-Level Maths Pure - Question 4 - 2018 - Paper 9

Question icon

Question 4

The-curve-C-has-equation--$$x^2-+-xy-+-y^2---4x---5y-+-1-=-0$$--(a)-Use-implicit-differentiation-to-find-\(-\frac{dy}{dx}-\)-in-terms-of-x-and-y-Edexcel-A-Level Maths Pure-Question 4-2018-Paper 9.png

The curve C has equation $$x^2 + xy + y^2 - 4x - 5y + 1 = 0$$ (a) Use implicit differentiation to find \( \frac{dy}{dx} \) in terms of x and y. (b) Find the x coo... show full transcript

Worked Solution & Example Answer:The curve C has equation $$x^2 + xy + y^2 - 4x - 5y + 1 = 0$$ (a) Use implicit differentiation to find \( \frac{dy}{dx} \) in terms of x and y - Edexcel - A-Level Maths Pure - Question 4 - 2018 - Paper 9

Step 1

Use implicit differentiation to find \( \frac{dy}{dx} \) in terms of x and y.

96%

114 rated

Answer

To differentiate the given equation implicitly, we first take the derivative of both sides with respect to x:

ddx(x2)+ddx(xy)+ddx(y2)ddx(4x)ddx(5y)+ddx(1)=0\frac{d}{dx}(x^2) + \frac{d}{dx}(xy) + \frac{d}{dx}(y^2) - \frac{d}{dx}(4x) - \frac{d}{dx}(5y) + \frac{d}{dx}(1) = 0

Calculating each term gives us:

2x+(dydxx+y)+2ydydx45dydx=02x + \left(\frac{dy}{dx} \cdot x + y\right) + 2y\frac{dy}{dx} - 4 - 5\frac{dy}{dx} = 0

Rearranging and collecting ( \frac{dy}{dx} ) terms:

(x+2y5)dydx=42xy\left(x + 2y - 5\right)\frac{dy}{dx} = 4 - 2x - y

Thus,

dydx=42xyx+2y5\frac{dy}{dx} = \frac{4 - 2x - y}{x + 2y - 5}

Step 2

Find the x coordinates of the two points on C where \( \frac{dy}{dx} = 0 \)

99%

104 rated

Answer

For ( \frac{dy}{dx} = 0 ), the numerator must equal zero:

42xy=04 - 2x - y = 0

This implies:

y=42xy = 4 - 2x

Next, we substitute ( y ) back into the original equation:

x2+x(42x)+(42x)24x5(42x)+1=0x^2 + x(4 - 2x) + (4 - 2x)^2 - 4x - 5(4 - 2x) + 1 = 0

Expanding and simplifying:

x2+4x2x2+1616x+4x220+10x+1=0x^2 + 4x - 2x^2 + 16 - 16x + 4x^2 - 20 + 10x + 1 = 0

Combine like terms:

3x22x3=03x^2 - 2x - 3 = 0

Using the quadratic formula:

x=(2)±(2)243(3)23=2±4+366=2±406x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot 3 \cdot (-3)}}{2\cdot 3} = \frac{2 \pm \sqrt{4 + 36}}{6} = \frac{2 \pm \sqrt{40}}{6}

Simplifying gives:

x=1±103x = \frac{1 \pm \sqrt{10}}{3}

Thus, the x-coordinates where ( \frac{dy}{dx} = 0 ) are:

x=1+103,x=1103x = \frac{1 + \sqrt{10}}{3}, \quad x = \frac{1 - \sqrt{10}}{3}

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;