Photo AI

The curve C has equation y = 2x - 8 times ext{ } oyalblue{ ext{ }} ext{ } rac{1}{2} imes oyalblue{ ext{ }} ext{ } imes x + 5, ext{ }x > 0 a) Find \frac{dy}{dx}, giving each term in its simplest form - Edexcel - A-Level Maths Pure - Question 1 - 2012 - Paper 3

Question icon

Question 1

The-curve-C-has-equation--y-=-2x---8-times--ext{-}-oyalblue{-ext{-}}-ext{-}-rac{1}{2}-imes--oyalblue{-ext{-}}-ext{-}-imes-x-+-5,--ext{-}x->-0--a)-Find-\frac{dy}{dx},-giving-each-term-in-its-simplest-form-Edexcel-A-Level Maths Pure-Question 1-2012-Paper 3.png

The curve C has equation y = 2x - 8 times ext{ } oyalblue{ ext{ }} ext{ } rac{1}{2} imes oyalblue{ ext{ }} ext{ } imes x + 5, ext{ }x > 0 a) Find \frac{dy}{dx},... show full transcript

Worked Solution & Example Answer:The curve C has equation y = 2x - 8 times ext{ } oyalblue{ ext{ }} ext{ } rac{1}{2} imes oyalblue{ ext{ }} ext{ } imes x + 5, ext{ }x > 0 a) Find \frac{dy}{dx}, giving each term in its simplest form - Edexcel - A-Level Maths Pure - Question 1 - 2012 - Paper 3

Step 1

Find \frac{dy}{dx}, giving each term in its simplest form

96%

114 rated

Answer

To find \frac{dy}{dx}, we differentiate the equation of the curve:

y=2x8x+5y = 2x - 8\sqrt{x} + 5

Using the derivative rules, we get:

dydx=ddx(2x)ddx(8x1/2)+ddx(5)\frac{dy}{dx} = \frac{d}{dx}(2x) - \frac{d}{dx}(8x^{1/2}) + \frac{d}{dx}(5)
=2812x1/2+0= 2 - 8 \cdot \frac{1}{2} x^{-1/2} + 0 =24x1/2= 2 - 4x^{-1/2} Thus, the final form is:

dydx=24x\frac{dy}{dx} = 2 - \frac{4}{\sqrt{x}}

Step 2

Find the equation of the tangent to C at the point P, giving your answer in the form y = ax + b

99%

104 rated

Answer

For the point P where x = \frac{1}{4}:

  1. Calculate \frac{dy}{dx}\ at P: dydxx=14=2414=28=6\frac{dy}{dx}\Big|_{x=\frac{1}{4}} = 2 - \frac{4}{\sqrt{\frac{1}{4}}} = 2 - 8 = -6

  2. Find the y-coordinate of point P: y=214814+5=124+5=2.5y = 2\cdot \frac{1}{4} - 8\sqrt{\frac{1}{4}} + 5 = \frac{1}{2} - 4 + 5 = 2.5

  3. Now using point-slope form of the line, we use the coordinates (\frac{1}{4}, 2.5) and slope -6: y2.5=6(x14)y - 2.5 = -6\left(x - \frac{1}{4}\right)

    Rearranging gives: y=6x+2.5+32=6x+6y = -6x + 2.5 + \frac{3}{2} = -6x + 6 Thus, in the form y = ax + b, we find: y=6x+6y = -6x + 6

Step 3

Find the coordinates of Q.

96%

101 rated

Answer

Since the tangent at Q is parallel to the given line 2x - 3y + 18 = 0, we first determine its slope:

Rearranging gives: 3y=2x+18    y=23x+63y = 2x + 18 \implies y = \frac{2}{3}x + 6

The slope is \frac{2}{3}.

Now we set \frac{dy}{dx} equal to this slope: 24x=232 - \frac{4}{\sqrt{x}} = \frac{2}{3} Rearranging and simplifying: 4x=232-\frac{4}{\sqrt{x}} = \frac{2}{3} - 2 4x=263=43-\frac{4}{\sqrt{x}} = \frac{2 - 6}{3} = -\frac{4}{3}

Thus, we cross-multiply: 43=4x4\cdot 3 = 4\sqrt{x} x=3    x=9\sqrt{x} = 3 \implies x = 9

Now, we find the corresponding y-coordinate using the curve equation: y=2989+5=1824+5=1y = 2\cdot 9 - 8\sqrt{9} + 5 = 18 - 24 + 5 = -1

So, the coordinates of Q are (9, -1).

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;