Photo AI
Question 7
5. (a) Differentiate \[ \frac{\cos 2x}{\sqrt{x}} \] with respect to x. (b) Show that \[ \frac{d}{dx}(\sec^2 3x) \] can be written in the form \[ \... show full transcript
Step 1
Answer
To differentiate ( \frac{\cos 2x}{\sqrt{x}} ), we will use the quotient rule, which states that if you have a function ( \frac{u}{v} ), the derivative is given by ( \frac{u'v - uv'}{v^2} ).
Let ( u = \cos 2x ) and ( v = \sqrt{x} ).
First, we find the derivatives:
Now applying the quotient rule:
[ \frac{d}{dx} \left( \frac{\cos 2x}{\sqrt{x}} \right) = \frac{(-2\sin 2x)\sqrt{x} - \cos 2x \left(\frac{1}{2\sqrt{x}}\right)}{x} = \frac{-2\sin 2x\sqrt{x} - \frac{\cos 2x}{2\sqrt{x}}}{x} ]
Step 2
Answer
To differentiate ( \sec^2 3x ), we will use the chain rule:
[ \frac{d}{dx}(\sec^2 3x) = 2\sec^2 3x \cdot \tan 3x \cdot 3 = 6\sec^2 3x \tan 3x ]
Now we can express ( 6 \sec^2 3x \tan 3x ) in the required form:
Let ( \mu = 6 ) and thus we can write it as: [ \frac{d}{dx}(\sec^2 3x) = \mu(\tan 3x + \tan 3x) = 6 \cdot 2 \tan 3x = 6 \sec^2 3x \tan 3x ]
Step 3
Answer
To find ( \frac{dy}{dx} ), we will first differentiate ( x = 2 \sin \left( \frac{y}{3} \right) ) implicitly:
[ \frac{dx}{dy} = 2 \cdot \frac{1}{3} \cos \left( \frac{y}{3} \right) \cdot \frac{dy}{dx} ]
This simplifies to: [ \frac{dx}{dy} = \frac{2}{3} \cos \left( \frac{y}{3} \right) \frac{dy}{dx} ]
Rearranging gives: [ \frac{dy}{dx} = \frac{3}{2 \cos \left( \frac{y}{3} \right)} ]
Now substituting for ( y ) in terms of ( x ): since ( y = 3 \arcsin \left( \frac{x}{2} \right) ), we can find ( \cos \left( \frac{y}{3} \right) = \cos \left( \arcsin \left( rac{x}{2} \right) \right) = \sqrt{1 - \left(\frac{x}{2}\right)^2} = \frac{\sqrt{4 - x^2}}{2} )
Thus we have: [ \frac{dy}{dx} = \frac{3}{2\left( \frac{\sqrt{4 - x^2}}{2} \right)} = \frac{3}{\sqrt{4 - x^2}} ]
Report Improved Results
Recommend to friends
Students Supported
Questions answered