Photo AI

3. (a) Express $2 \, \cos \theta - \sin \theta$ in the form $R \cos(\theta + \alpha)$, where $R$ and $\alpha$ are constants, $R > 0$ and $0 < \alpha < 90^\circ$ - Edexcel - A-Level Maths Pure - Question 5 - 2016 - Paper 3

Question icon

Question 5

3.-(a)-Express-$2-\,-\cos-\theta---\sin-\theta$-in-the-form-$R-\cos(\theta-+-\alpha)$,-where-$R$-and-$\alpha$-are-constants,-$R->-0$-and-$0-<-\alpha-<-90^\circ$-Edexcel-A-Level Maths Pure-Question 5-2016-Paper 3.png

3. (a) Express $2 \, \cos \theta - \sin \theta$ in the form $R \cos(\theta + \alpha)$, where $R$ and $\alpha$ are constants, $R > 0$ and $0 < \alpha < 90^\circ$. Giv... show full transcript

Worked Solution & Example Answer:3. (a) Express $2 \, \cos \theta - \sin \theta$ in the form $R \cos(\theta + \alpha)$, where $R$ and $\alpha$ are constants, $R > 0$ and $0 < \alpha < 90^\circ$ - Edexcel - A-Level Maths Pure - Question 5 - 2016 - Paper 3

Step 1

Express $2 \cos \theta - \sin \theta$ in the form $R \cos(\theta + \alpha)$

96%

114 rated

Answer

To express 2cosθsinθ2 \cos \theta - \sin \theta in the required form, we recognize that we can rewrite it using the cosine addition formula.

Let:

  • R=(2)2+(1)2=4+1=5R = \sqrt{(2)^2 + (-1)^2} = \sqrt{4 + 1} = \sqrt{5}
  • To find α\alpha, use: tanα=12\tan \alpha = \frac{-1}{2} Thus, we find: α=tan1(12)\alpha = \tan^{-1}\left(-\frac{1}{2}\right) which gives approximately α=26.57\alpha = -26.57^\circ. Since we need 0<α<900 < \alpha < 90^\circ, we take: α=26.57\alpha = 26.57^\circ.

Step 2

Hence solve, for $0 \leq \theta < 360^\circ$, $\frac{2}{2 \cos \theta - \sin \theta - 1} = 15$

99%

104 rated

Answer

Starting from the equation: 22cosθsinθ1=15\frac{2}{2 \cos \theta - \sin \theta - 1} = 15 Rearranging gives: 2=15(2cosθsinθ1)2 = 15(2 \cos \theta - \sin \theta - 1) Expanding yields: 15(2cosθsinθ)15=215(2 \cos \theta - \sin \theta) - 15 = 2 30cosθ15sinθ=1730 \cos \theta - 15 \sin \theta = 17 Substituting from part (a): 30cosθ5cos(θ+26.57)=1730 \cos \theta - \sqrt{5} \cos(\theta + 26.57^\circ) = 17 This requires numerical methods or graphing techniques to solve within the range 0θ<3600 \leq \theta < 360^\circ.

Step 3

Use your solutions to parts (a) and (b) to deduce the smallest positive value of $\theta$ for which $\frac{2}{2 \cos \theta + \sin \theta - 1} = 15$

96%

101 rated

Answer

To solve the equation: 22cosθ+sinθ1=15\frac{2}{2 \cos \theta + \sin \theta - 1} = 15 Following similar steps as in part (b) results in: 2=15(2cosθ+sinθ1)2 = 15(2 \cos \theta + \sin \theta - 1) After rearranging and simplifying, we solve for θ\theta using the previously found values from parts (a) and (b) to determine the smallest positive solution for θ\theta.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;