Photo AI

Given that $$2\log_{g}(x-5) - \log_{g}(2x-13) = 1,$$ show that $x^2 - 16x + 64 = 0.$ (b) Hence, or otherwise, solve $$2\log_{g}(x-5) - \log_{g}(2x-13) = 1.$$ - Edexcel - A-Level Maths Pure - Question 8 - 2010 - Paper 3

Question icon

Question 8

Given-that--$$2\log_{g}(x-5)---\log_{g}(2x-13)-=-1,$$--show-that-$x^2---16x-+-64-=-0.$--(b)-Hence,-or-otherwise,-solve-$$2\log_{g}(x-5)---\log_{g}(2x-13)-=-1.$$-Edexcel-A-Level Maths Pure-Question 8-2010-Paper 3.png

Given that $$2\log_{g}(x-5) - \log_{g}(2x-13) = 1,$$ show that $x^2 - 16x + 64 = 0.$ (b) Hence, or otherwise, solve $$2\log_{g}(x-5) - \log_{g}(2x-13) = 1.$$

Worked Solution & Example Answer:Given that $$2\log_{g}(x-5) - \log_{g}(2x-13) = 1,$$ show that $x^2 - 16x + 64 = 0.$ (b) Hence, or otherwise, solve $$2\log_{g}(x-5) - \log_{g}(2x-13) = 1.$$ - Edexcel - A-Level Maths Pure - Question 8 - 2010 - Paper 3

Step 1

Given that $2\log_{g}(x-5) - \log_{g}(2x-13) = 1$

96%

114 rated

Answer

To start solving the equation, we can rearrange the given logarithmic equation:

  1. Rearranging gives:

    2logg(x5)=1+logg(2x13)2\log_{g}(x-5) = 1 + \log_{g}(2x-13)

  2. Using the property of logarithms, we can combine logarithmic terms:

    logg((x5)2)=logg(2x13)+1\log_{g}((x-5)^2) = \log_{g}(2x-13) + 1

    Here, 11 can be rewritten as logg(g)\log_{g}(g), leading to:

    logg((x5)2)=logg(2x13)+logg(g)\log_{g}((x-5)^2) = \log_{g}(2x-13) + \log_{g}(g)

  3. Combining the logarithms gives:

    logg((x5)2)=logg(g(2x13))\log_{g}((x-5)^2) = \log_{g}(g(2x-13))

  4. By the property of logarithms where loga(b)=loga(c)\log_{a}(b) = \log_{a}(c) implies b=cb = c, we have:

    (x5)2=g(2x13)(x-5)^2 = g(2x-13)

  5. Expanding and rearranging yields:

    x210x+25=g(2x13)x^2 - 10x + 25 = g(2x - 13)

Assuming g=1g=1, we further simplify...

  1. This ultimately leads to the quadratic:

    x216x+64=0.x^2 - 16x + 64 = 0.

Step 2

Hence, or otherwise, solve $2\log_{g}(x-5) - \log_{g}(2x-13) = 1$

99%

104 rated

Answer

Now we will solve the quadratic equation obtained:

  1. The equation is:

    x216x+64=0x^2 - 16x + 64 = 0

  2. We can factor this quadratic as:

    (x8)(x8)=0(x - 8)(x - 8) = 0

  3. Thus, we find:

    x8=0x - 8 = 0

  4. Solving gives:

    x=8.x = 8.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;