Photo AI

2. (a) Expand and simplify $(7 + \sqrt{5})(3 - \sqrt{5})$ - Edexcel - A-Level Maths Pure - Question 4 - 2010 - Paper 2

Question icon

Question 4

2.-(a)-Expand-and-simplify-$(7-+-\sqrt{5})(3---\sqrt{5})$-Edexcel-A-Level Maths Pure-Question 4-2010-Paper 2.png

2. (a) Expand and simplify $(7 + \sqrt{5})(3 - \sqrt{5})$. (b) Express $\frac{7 + \sqrt{5}}{3 + \sqrt{5}}$ in the form $a + b\sqrt{5}$, where $a$ and $b$ are intege... show full transcript

Worked Solution & Example Answer:2. (a) Expand and simplify $(7 + \sqrt{5})(3 - \sqrt{5})$ - Edexcel - A-Level Maths Pure - Question 4 - 2010 - Paper 2

Step 1

Expand and simplify $(7 + \sqrt{5})(3 - \sqrt{5})$

96%

114 rated

Answer

To expand the expression, we can use the distributive property:

(7+5)(35)=73+7(5)+53+5(5)(7 + \sqrt{5})(3 - \sqrt{5}) = 7 \cdot 3 + 7 \cdot (-\sqrt{5}) + \sqrt{5} \cdot 3 + \sqrt{5} \cdot (-\sqrt{5})

Calculating each term gives:

  • 73=217 \cdot 3 = 21
  • 7(5)=757 \cdot (-\sqrt{5}) = -7\sqrt{5}
  • 53=35\sqrt{5} \cdot 3 = 3\sqrt{5}
  • 5(5)=5\sqrt{5} \cdot (-\sqrt{5}) = -5

Combining these results:

2175+35521 - 7\sqrt{5} + 3\sqrt{5} - 5

Next, we group the like terms:

215+(75+35)=164521 - 5 + (-7\sqrt{5} + 3\sqrt{5}) = 16 - 4\sqrt{5}

Thus, the final answer is:

164516 - 4\sqrt{5}

Step 2

Express $\frac{7 + \sqrt{5}}{3 + \sqrt{5}}$ in the form $a + b\sqrt{5}$

99%

104 rated

Answer

To express this fraction in the desired form, we can multiply the numerator and the denominator by the conjugate of the denominator:

7+53+53535\frac{7 + \sqrt{5}}{3 + \sqrt{5}} \cdot \frac{3 - \sqrt{5}}{3 - \sqrt{5}}

This gives:

=(7+5)(35)(3+5)(35)= \frac{(7 + \sqrt{5})(3 - \sqrt{5})}{(3 + \sqrt{5})(3 - \sqrt{5})}

Calculating the denominator first:

(3+5)(35)=32(5)2=95=4(3 + \sqrt{5})(3 - \sqrt{5}) = 3^2 - (\sqrt{5})^2 = 9 - 5 = 4

Next, we can use the result from part (a) for the numerator:

=16454=164454=45= \frac{16 - 4\sqrt{5}}{4} = \frac{16}{4} - \frac{4\sqrt{5}}{4} = 4 - \sqrt{5}

This corresponds to:

  • a=4a = 4
  • b=1b = -1

Thus, our answer is:

454 - \sqrt{5}

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;