Photo AI

f(x) = 7 cos 2x - 24 sin 2x Given that f(x) = R cos(2x + α), where R > 0 and 0 < α < 90°; a) find the value of R and the value of α - Edexcel - A-Level Maths Pure - Question 1 - 2012 - Paper 5

Question icon

Question 1

f(x)-=-7-cos-2x---24-sin-2x--Given-that-f(x)-=-R-cos(2x-+-α),-where-R->-0-and-0-<-α-<-90°;--a)-find-the-value-of-R-and-the-value-of-α-Edexcel-A-Level Maths Pure-Question 1-2012-Paper 5.png

f(x) = 7 cos 2x - 24 sin 2x Given that f(x) = R cos(2x + α), where R > 0 and 0 < α < 90°; a) find the value of R and the value of α. b) Hence solve the equation ... show full transcript

Worked Solution & Example Answer:f(x) = 7 cos 2x - 24 sin 2x Given that f(x) = R cos(2x + α), where R > 0 and 0 < α < 90°; a) find the value of R and the value of α - Edexcel - A-Level Maths Pure - Question 1 - 2012 - Paper 5

Step 1

a) find the value of R and the value of α

96%

114 rated

Answer

To find the values of R and α, we start with the equation:

R=A2+B2R = \sqrt{A^2 + B^2}

where A = 7 and B = -24. Therefore:

R=72+(24)2=49+576=625=25R = \sqrt{7^2 + (-24)^2} = \sqrt{49 + 576} = \sqrt{625} = 25

Next, we find α using:

tan(α)=BA=247\tan(α) = \frac{B}{A} = \frac{-24}{7}

Thus,

α=tan1(247)α = \tan^{-1}\left(\frac{-24}{7}\right)

This gives us:

α73.7°α ≈ 73.7°

Step 2

b) Hence solve the equation 7 cos 2x - 24 sin 2x = 12.5

99%

104 rated

Answer

We can rewrite the equation using R and α:

Rcos(2x+α)=12.5R \cos(2x + α) = 12.5

Substituting for R and α gives:

25cos(2x+73.7°)=12.525 \cos(2x + 73.7°) = 12.5

Dividing both sides by 25:

cos(2x+73.7°)=0.5\cos(2x + 73.7°) = 0.5

The general solutions for this are:

2x+73.7°=60°+k(360°) or 2x+73.7°=300°+k(360°)2x + 73.7° = 60° + k(360°) \text{ or } 2x + 73.7° = 300° + k(360°)

For k = 0,

  1. First equation:
ightarrow 2x = -13.7° ext{ (not valid for } 0 ≤ x < 180°)$$ 2. Second equation: $$2x = 300° - 73.7° ightarrow 2x = 226.3° ightarrow x = 113.15°$$ Thus, the only valid solution in the range is: $$x ≈ 113.2°$$

Step 3

c) Express 14 cos² x - 48 sin x cos x in the form a cos 2x + b sin 2x + c

96%

101 rated

Answer

We start with the expression:

14cos2x48sinxcosx14 \cos^2 x - 48 \sin x \cos x

This can be rewritten using the double-angle identities:

=14(1+cos(2x)2)24sin(2x)= 14 \left( \frac{1 + \cos(2x)}{2} \right) - 24 \sin(2x)

This simplifies to:

=7+7cos(2x)24sin(2x)= 7 + 7 \cos(2x) - 24 \sin(2x)

Thus, we identify:

a = 7,

b = -24,

c = 7.

Step 4

d) Hence, using your answers to parts (a) and (c), deduce the maximum value of 14 cos² x - 48 sin x cos x.

98%

120 rated

Answer

The maximum value of the expression occurs when:

acos(2x)+bsin(2x)a \cos(2x) + b \sin(2x)

The maximum value can be found using:

R=a2+b2R = \sqrt{a^2 + b^2}

Substituting in the values:

a=7,b=24R=72+(24)2=625=25a = 7, b = -24 \Rightarrow R = \sqrt{7^2 + (-24)^2} = \sqrt{625} = 25

Thus, the maximum value is:

=7+25=32= 7 + 25 = 32.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;