Photo AI

The line $l_1$ has equation $$ extbf{r} = \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$ where $\\lambda$ is a scalar parameter - Edexcel - A-Level Maths Pure - Question 1 - 2009 - Paper 6

Question icon

Question 1

The-line-$l_1$-has-equation--$$-extbf{r}-=-\begin{pmatrix}-2-\\-3-\\--4-\end{pmatrix}-+-\lambda-\begin{pmatrix}-1-\\-2-\\-1-\end{pmatrix}$$-where-$\\lambda$-is-a-scalar-parameter-Edexcel-A-Level Maths Pure-Question 1-2009-Paper 6.png

The line $l_1$ has equation $$ extbf{r} = \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$ where $\\lambda$ is a sca... show full transcript

Worked Solution & Example Answer:The line $l_1$ has equation $$ extbf{r} = \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$ where $\\lambda$ is a scalar parameter - Edexcel - A-Level Maths Pure - Question 1 - 2009 - Paper 6

Step 1

Find the coordinates of C

96%

114 rated

Answer

To find the coordinates of point CC, we set up the following equations from the two lines:

From l1l_1: (2+λ3+2λ4+λ)\begin{pmatrix} 2 + \lambda \\ 3 + 2\lambda \\ -4 + \lambda \end{pmatrix} From l2l_2: (5μ92μ)\begin{pmatrix} 5\mu \\ 9 \\ 2\mu \end{pmatrix}

Equating the components, we get the following system of equations:

  1. 2+λ=5μ2 + \lambda = 5\mu
  2. 3+2λ=93 + 2\lambda = 9
  3. 4+λ=2μ-4 + \lambda = 2\mu

From the second equation, we can solve for λ\lambda: 2λ=93λ=32\lambda = 9 - 3 \\ \lambda = 3

Substituting λ=3\lambda = 3 into the first equation: 2+3=5μ5=5μμ=12 + 3 = 5\mu \\ 5 = 5\mu \\ \mu = 1

Now substituting λ=3\lambda = 3 into the line l1l_1 gives us the coordinates of point C: $$\textbf{C} = \begin{pmatrix} 2 + 3 \ 3 + 2(3) \ -4 + 3 \end{pmatrix} = \begin{pmatrix} 5 \ 9 \ -1 \end{pmatrix}.$

Step 2

Find the size of the angle ACB

99%

104 rated

Answer

To find the angle ACBACB, we first need to determine the direction vectors AC\overrightarrow{AC} and BC\overrightarrow{BC}:

  1. Point AA has coordinates when λ=0\lambda = 0:
    A=(234)\textbf{A} = \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix}

  2. Point BB has coordinates when μ=1\mu = -1: B=(0+5(1)90+2(1))=(592)\textbf{B} = \begin{pmatrix} 0 + 5(-1) \\ 9 \\ 0 + 2(-1) \end{pmatrix} = \begin{pmatrix} -5 \\ 9 \\ -2 \end{pmatrix}

Now, we can find the vectors:

AC=CA=(5 2 1)(234)=(363)\overrightarrow{AC} = \textbf{C} - \textbf{A} = \begin{pmatrix} 5 \ - 2 \ - 1 \end{pmatrix} - \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} = \begin{pmatrix} 3 \\ 6 \\ 3 \end{pmatrix}

BC=CB=(591)(592)=(1001)\overrightarrow{BC} = \textbf{C} - \textbf{B} = \begin{pmatrix} 5 \\ 9 \\ -1 \end{pmatrix} - \begin{pmatrix} -5 \\ 9 \\ -2 \end{pmatrix} = \begin{pmatrix} 10 \\ 0 \\ 1 \end{pmatrix}

Next, we calculate the cosine of the angle θ\theta between AC\overrightarrow{AC} and BC\overrightarrow{BC} using the dot product:

cosθ=ACBCACBC\cos \theta = \frac{\overrightarrow{AC} \cdot \overrightarrow{BC}}{|\overrightarrow{AC}||\overrightarrow{BC}|}

Calculating the dot product: ACBC=310+60+31=30+0+3=33\overrightarrow{AC} \cdot \overrightarrow{BC} = 3 \cdot 10 + 6 \cdot 0 + 3 \cdot 1 = 30 + 0 + 3 = 33

Now calculate the magnitudes: AC=32+62+32=9+36+9=54|\overrightarrow{AC}| = \sqrt{3^2 + 6^2 + 3^2} = \sqrt{9 + 36 + 9} = \sqrt{54}

BC=102+02+12=100+0+1=101|\overrightarrow{BC}| = \sqrt{10^2 + 0^2 + 1^2} = \sqrt{100 + 0 + 1} = \sqrt{101}

Thus, cosθ=3354101.\cos \theta = \frac{33}{\sqrt{54} \cdot \sqrt{101}}.

Calculating θ\theta gives: $$\theta = \cos^{-1} \left(\frac{33}{\sqrt{54 \cdot 101}}\right) \approx 57.95^\circ.$

Step 3

Hence, or otherwise, find the area of the triangle ABC

96%

101 rated

Answer

The area AA of triangle ABCABC can be calculated using the formula:

A=12ACBCsin(θ)A = \frac{1}{2} \cdot |\overrightarrow{AC}| \cdot |\overrightarrow{BC}| \cdot \sin(\theta)

We already have: AC=54=36|\overrightarrow{AC}| = \sqrt{54} = 3\sqrt{6} BC=101|\overrightarrow{BC}| = \sqrt{101} θ57.95\theta \approx 57.95^\circ

Thus, A=12(36)101sin(57.95)A = \frac{1}{2} \cdot (3\sqrt{6}) \cdot \sqrt{101} \cdot \sin(57.95^\circ)

Using the sine value: sin(57.95)0.8387\sin(57.95^\circ) \approx 0.8387

Finally, compute: A=12361010.838733.5.A = \frac{1}{2} \cdot 3\sqrt{6} \cdot \sqrt{101} \cdot 0.8387 \approx 33.5.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;