Photo AI

7. (i) Find the exact value of x for which $$ \log_2(2x) = \log_2(5x + 4) - 3 $$ (ii) Given that $$ \log_y y + 3\log_2 2 = 5 $$ express y in terms of a - Edexcel - A-Level Maths Pure - Question 9 - 2013 - Paper 4

Question icon

Question 9

7.-(i)-Find-the-exact-value-of-x-for-which-$$-\log_2(2x)-=-\log_2(5x-+-4)---3---$$-(ii)-Given-that-$$-\log_y-y-+-3\log_2-2-=-5---$$-express-y-in-terms-of-a-Edexcel-A-Level Maths Pure-Question 9-2013-Paper 4.png

7. (i) Find the exact value of x for which $$ \log_2(2x) = \log_2(5x + 4) - 3 $$ (ii) Given that $$ \log_y y + 3\log_2 2 = 5 $$ express y in terms of a. Give y... show full transcript

Worked Solution & Example Answer:7. (i) Find the exact value of x for which $$ \log_2(2x) = \log_2(5x + 4) - 3 $$ (ii) Given that $$ \log_y y + 3\log_2 2 = 5 $$ express y in terms of a - Edexcel - A-Level Maths Pure - Question 9 - 2013 - Paper 4

Step 1

Find the exact value of x for which $$ \log_2(2x) = \log_2(5x + 4) - 3 $$

96%

114 rated

Answer

To solve for x, start by applying the properties of logarithms:

  1. Rewrite the equation: log2(2x)=log2(5x+4)3\log_2(2x) = \log_2(5x + 4) - 3

  2. Move the logarithmic term to one side: log2(2x)+3=log2(5x+4)\log_2(2x) + 3 = \log_2(5x + 4)

  3. Rewrite 3 in terms of logarithms: log2(2x)+log2(23)=log2(5x+4)\log_2(2x) + \log_2(2^3) = \log_2(5x + 4)

  4. Combine the logarithms: log2(2x8)=log2(5x+4)\log_2(2x \cdot 8) = \log_2(5x + 4) which simplifies to: log2(16x)=log2(5x+4)\log_2(16x) = \log_2(5x + 4)

  5. Set the arguments of the logarithms equal: 16x=5x+416x = 5x + 4

  6. Solve for x: 16x5x=416x - 5x = 4
    11x=411x = 4
    x=411x = \frac{4}{11}

Step 2

Given that $$ \log_y y + 3\log_2 2 = 5 $$ express y in terms of a.

99%

104 rated

Answer

  1. Simplify the logarithmic expression:
    Since logyy=1\log_y y = 1, we can replace it: 1+3log22=51 + 3\log_2 2 = 5

  2. Recall that log22=1\log_2 2 = 1: 1+31=51 + 3 \cdot 1 = 5 simplifies to: 1+3=51 + 3 = 5

  3. This means we need to express y in terms of another variable a: To isolate y, we can use: 3+1=53 + 1 = 5 implies y must follow y=aky = a^k format for some base a. Depending on the context of the problem, you can express y in the simplest terms as: y=253=22=4y = 2^{5-3} = 2^{2} = 4.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;