Photo AI

The point P lies on the curve with equation $x = (4y - ext{sin } 2y)^2$ Given that P has $(x, y)$ coordinates $igg( p, rac{ ext{π}}{2} igg)$, where $p$ is a constant, (a) find the exact value of $p$ - Edexcel - A-Level Maths Pure - Question 7 - 2015 - Paper 3

Question icon

Question 7

The-point-P-lies-on-the-curve-with-equation--$x-=-(4y----ext{sin-}-2y)^2$----Given-that-P-has-$(x,-y)$-coordinates-$igg(-p,--rac{-ext{π}}{2}-igg)$,-where-$p$-is-a-constant,----(a)-find-the-exact-value-of-$p$-Edexcel-A-Level Maths Pure-Question 7-2015-Paper 3.png

The point P lies on the curve with equation $x = (4y - ext{sin } 2y)^2$ Given that P has $(x, y)$ coordinates $igg( p, rac{ ext{π}}{2} igg)$, where $p$ is a ... show full transcript

Worked Solution & Example Answer:The point P lies on the curve with equation $x = (4y - ext{sin } 2y)^2$ Given that P has $(x, y)$ coordinates $igg( p, rac{ ext{π}}{2} igg)$, where $p$ is a constant, (a) find the exact value of $p$ - Edexcel - A-Level Maths Pure - Question 7 - 2015 - Paper 3

Step 1

find the exact value of p.

96%

114 rated

Answer

To find the exact value of pp, we need to substitute y = rac{ ext{π}}{2} into the equation for xx:

x=(4yextsin2y)2x = (4y - ext{sin } 2y)^2

Substituting:

x = (4 imes rac{ ext{π}}{2} - ext{sin}(2 imes rac{ ext{π}}{2}))^2

Calculating this we have:

  • First, evaluate 4 imes rac{ ext{π}}{2} = 2 ext{π}.
  • Next, evaluate extsin(extπ)=0 ext{sin}( ext{π}) = 0. So,

x=(2extπ0)2=(2extπ)2=4extπ2x = (2 ext{π} - 0)^2 = (2 ext{π})^2 = 4 ext{π}^2

Thus, the value of pp is 4extπ24 ext{π}^2.

Step 2

Use calculus to find the coordinates of A.

99%

104 rated

Answer

To find the coordinates of point A, we first determine the derivative of xx with respect to yy.

From the function,

x=(4yextsin2y)2x = (4y - ext{sin } 2y)^2

Using the chain rule, we have:

rac{dx}{dy} = 2(4y - ext{sin } 2y) imes (4 - 2 ext{cos } 2y)

Now, substitute y = rac{ ext{π}}{2} to find the slope at point P:

  • 42extcos(extπ)=4+2=64 - 2 ext{cos}( ext{π}) = 4 + 2 = 6.
  • Therefore, at y = rac{ ext{π}}{2}, 4yextsin2y=2extπ4y - ext{sin } 2y = 2 ext{π}, leading to:

rac{dx}{dy} = 2(2 ext{π})(6) = 24 ext{π}

The equation of the tangent line at P can now be deduced:

Using the point-slope form, y - rac{ ext{π}}{2} = rac{24 ext{π}}{24} (x - 4 ext{π}^2)

Simplifying this equation leads to: y - rac{ ext{π}}{2} = ext{π} (x - 4 ext{π}^2)

To find the y-intercept, let x=0x = 0:

y - rac{ ext{π}}{2} = ext{π} (0 - 4 ext{π}^2)

This yields: y = rac{ ext{π}}{2} - 4 ext{π}^3

Hence, the coordinates of point A are ig(0, rac{ ext{π}}{2} - 4 ext{π}^3ig).

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;