Photo AI
Question 13
12. (a) Prove \[ \frac{\cos 3\theta}{\sin \theta} + \frac{\sin 3\theta}{\cos \theta} = 2 \cot 2\theta \] \[ \theta \pm (90n)^\circ, n \in \mathbb{Z} \] (b) Hence... show full transcript
Step 1
Answer
To prove the given equation, start by rewriting the left-hand side (LHS):
[ \frac{\cos 3\theta \cos \theta + \sin 3\theta \sin \theta}{\sin \theta \cos \theta} = \frac{\cos(3\theta - \theta)}{\sin \theta \cos \theta} ]
Using the identity for the cotangent:
[ \cot 2\theta = \frac{\cos 2\theta}{\sin 2\theta} \text{ and thus} \sin 2\theta = 2 \sin \theta \cos \theta ]
This means we can express the LHS as:
[ \frac{\cos(3\theta - \theta)}{\sin \theta \cos \theta} = 2 \cot 2\theta ]
This confirms the given equation is true.
Step 2
Answer
Starting with the equation:
[ \frac{\cos 3\theta}{\sin \theta} + \frac{\sin 3\theta}{\cos \theta} = 4 ]
We can combine the fractions:
[ \frac{\cos 3\theta \cos \theta + \sin 3\theta \sin \theta}{\sin \theta \cos \theta} = 4 ]
This simplifies to:
[ \frac{\cos(3\theta - \theta)}{\sin \theta \cos \theta} = 4 ]
Solving for ( \theta ):
Report Improved Results
Recommend to friends
Students Supported
Questions answered