Photo AI
Question 7
6. (a) Prove that \[ \frac{1}{\sin 2\theta} \cdot \frac{\cos 2\theta}{\sin 2\theta} = \tan \theta, \quad \theta \neq 90^\circ, n \in \mathbb{Z} \] (b) Hence, or ot... show full transcript
Step 1
Answer
We start with the left-hand side:
[ \frac{1}{\sin 2\theta} \cdot \frac{\cos 2\theta}{\sin 2\theta} = \frac{\cos 2\theta}{\sin^2 2\theta} ]
Using the double angle identity for sine, we have:
[ \sin 2\theta = 2 \sin \theta \cos \theta ]
Thus, substituting this into our expression gives:
[ \sin^2 2\theta = (2 \sin \theta \cos \theta)^2 = 4 \sin^2 \theta \cos^2 \theta ]
Now substituting this back in:
[ \frac{\cos 2\theta}{4 \sin^2 \theta \cos^2 \theta} = \frac{\cos 2\theta}{2 \sin^2 \theta \cos^2 \theta} \cdot \frac{1}{2} ]
Using the identity (\tan \theta = \frac{\sin \theta}{\cos \theta}), we rewrite the expression as:
[ \frac{\sin \theta}{\cos \theta} = \tan \theta ]
Hence, it is proven that: [ \frac{1}{\sin 2\theta} \cdot \frac{\cos 2\theta}{\sin 2\theta} = \tan \theta ]
Step 2
Answer
Using the tangent subtraction formula:
[ \tan(60^\circ - 45^\circ) = \frac{\tan 60^\circ - \tan 45^\circ}{1 + \tan 60^\circ \tan 45^\circ} ]
Substituting in the known values:
[ \tan 60^\circ = \sqrt{3}, \quad \tan 45^\circ = 1 ]
We get:
[ \tan 15^\circ = \frac{\sqrt{3} - 1}{1 + \sqrt{3} \cdot 1} = \frac{\sqrt{3} - 1}{1 + \sqrt{3}} ]
Rationalizing the denominator:
[ \tan 15^\circ = \frac{(\sqrt{3} - 1)(1 - \sqrt{3})}{(1 + \sqrt{3})(1 - \sqrt{3})} = \frac{\sqrt{3} - 3 + 1}{1 - 3} = 2 - \sqrt{3} ]
Step 3
Answer
Start with the given equation:
[ \csc 4x - \cot 4x = 1 ]
Rearranging gives:
[ \csc 4x = 1 + \cot 4x ]
Substituting (\csc 4x = \frac{1}{\sin 4x}) and (\cot 4x = \frac{\cos 4x}{\sin 4x}) leads to:
[ \frac{1}{\sin 4x} = 1 + \frac{\cos 4x}{\sin 4x} \implies 1 = \sin 4x + \cos 4x ]
This implies:
[ \sin 4x + \cos 4x = 1 ]
Square both sides:
[\sin^2 4x + \cos^2 4x + 2\sin 4x \cos 4x = 1 \rightarrow 1 + \sin 8x = 1 \rightarrow \sin 8x = 0]
Thus, (4x = n\pi) gives possible solutions for:
[ 4x = 0, 180, 360, ...]
Solving for (x:)
[ x = 0, 45, 90, ...]
Limiting to (0 < x < 360) gives solutions: (x = 45^\circ, 90^\circ)
Report Improved Results
Recommend to friends
Students Supported
Questions answered