Photo AI

3. Figure 1 shows the finite region R bounded by the x-axis, the y-axis, the line x = \frac{\pi}{2} and the curve with equation $y = \sec\left(\frac{1}{2} x\right), \quad 0 \leq x \leq \frac{\pi}{2}.$ The table shows corresponding values of x and y for y = \sec\left(\frac{1}{2} x\right) - Edexcel - A-Level Maths Pure - Question 4 - 2013 - Paper 9

Question icon

Question 4

3.-Figure-1-shows-the-finite-region-R-bounded-by-the-x-axis,-the-y-axis,-the-line-x-=-\frac{\pi}{2}-and-the-curve-with-equation--$y-=-\sec\left(\frac{1}{2}-x\right),-\quad-0-\leq-x-\leq-\frac{\pi}{2}.$--The-table-shows-corresponding-values-of-x-and-y-for-y-=-\sec\left(\frac{1}{2}-x\right)-Edexcel-A-Level Maths Pure-Question 4-2013-Paper 9.png

3. Figure 1 shows the finite region R bounded by the x-axis, the y-axis, the line x = \frac{\pi}{2} and the curve with equation $y = \sec\left(\frac{1}{2} x\right),... show full transcript

Worked Solution & Example Answer:3. Figure 1 shows the finite region R bounded by the x-axis, the y-axis, the line x = \frac{\pi}{2} and the curve with equation $y = \sec\left(\frac{1}{2} x\right), \quad 0 \leq x \leq \frac{\pi}{2}.$ The table shows corresponding values of x and y for y = \sec\left(\frac{1}{2} x\right) - Edexcel - A-Level Maths Pure - Question 4 - 2013 - Paper 9

Step 1

Complete the table above giving the missing value of y to 6 decimal places.

96%

114 rated

Answer

To find the missing value of y when x = \frac{\pi}{3}, we substitute \frac{\pi}{3} into the equation:

y=sec(12π3)=sec(π6)=2.000000.y = \sec\left(\frac{1}{2} \cdot \frac{\pi}{3}\right) = \sec\left(\frac{\pi}{6}\right) = 2.000000.

Thus, the completed table is:

\begin{array}{|c|c|} \hline x & 0 & \frac{\pi}{6} & \frac{\pi}{3} & \frac{\pi}{2} \ \hline y & 1 & 1.035276 & 2.000000 & 1.414214 \ \hline \end{array}

Step 2

Using the trapezium rule, with all of the values of y from the completed table, find an approximation for the area of R, giving your answer to 4 decimal places.

99%

104 rated

Answer

To use the trapezium rule, we approximate the area as:

Ah2(y0+2i=1n1yi+yn)A \approx \frac{h}{2} \left( y_0 + 2 \sum_{i=1}^{n-1} y_i + y_n \right)

where h is the width of each interval. Here, we have:

  • Interval widths: (h = \frac{\pi/2 - 0}{3} = \frac{\pi}{6})
  • Values: (y_0 = 1, y_1 = 1.035276, y_2 = 2.000000, y_3 = 1.414214)

Applying the trapezium rule:

Aπ62(1+2(1.035276+2.000000)+1.414214)A \approx \frac{\frac{\pi}{6}}{2} \left( 1 + 2 \cdot (1.035276 + 2.000000) + 1.414214 \right)

Calculating:

Aπ62(1+4.070552+1.414214)=π626.484766A \approx \frac{\frac{\pi}{6}}{2} \left( 1 + 4.070552 + 1.414214 \right) = \frac{\frac{\pi}{6}}{2} \cdot 6.484766

After evaluating, the area is approximately 1.7787.

Step 3

Use calculus to find the exact volume of the solid formed.

96%

101 rated

Answer

To calculate the volume of the solid formed by rotating region R around the x-axis, we use the formula:

V=π0π2[y]2dxV = \pi \int_{0}^{\frac{\pi}{2}} \left[ y \right]^2 dx

Substituting for y:

V=π0π2[sec(12x)]2dxV = \pi \int_{0}^{\frac{\pi}{2}} \left[ \sec\left( \frac{1}{2} x \right) \right]^2 dx

This simplifies to:

V=π0π2sec2(12x)dxV = \pi \int_{0}^{\frac{\pi}{2}} \sec^2\left( \frac{1}{2} x \right) dx

Using the substitution (u = \frac{1}{2} x), we have:

  • du = (\frac{1}{2} dx) implies dx = 2 du,
  • and changing the limits gives (u = 0) to (u = \frac{\pi}{4}).

Thus:

V=2π0π4sec2(u)du=2π[tan(u)]0π4=2π(10)=2π.V = 2\pi \int_{0}^{\frac{\pi}{4}} \sec^2(u) du = 2\pi \left[ \tan(u) \right]_{0}^{\frac{\pi}{4}} = 2\pi(1 - 0) = 2\pi.

The exact volume of the solid is therefore (2\pi).

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;