Photo AI

Expand and simplify $(7 + \sqrt{5})(3 - \sqrt{5})$ - Edexcel - A-Level Maths Pure - Question 4 - 2010 - Paper 2

Question icon

Question 4

Expand-and-simplify-$(7-+-\sqrt{5})(3---\sqrt{5})$-Edexcel-A-Level Maths Pure-Question 4-2010-Paper 2.png

Expand and simplify $(7 + \sqrt{5})(3 - \sqrt{5})$. Express \( \frac{7 + \sqrt{5}}{3 + \sqrt{5}} \) in the form \( a + b\sqrt{5} \), where \( a \) and \( b \) are i... show full transcript

Worked Solution & Example Answer:Expand and simplify $(7 + \sqrt{5})(3 - \sqrt{5})$ - Edexcel - A-Level Maths Pure - Question 4 - 2010 - Paper 2

Step 1

Expand and simplify $(7 + \sqrt{5})(3 - \sqrt{5})$

96%

114 rated

Answer

To expand the expression, we use the distributive property:

  1. Multiply each term in the first bracket by each term in the second bracket:

    (7)(3)+(7)(5)+(5)(3)+(5)(5)(7)(3) + (7)(-\sqrt{5}) + (\sqrt{5})(3) + (\sqrt{5})(-\sqrt{5})

  2. This results in:

    2175+35521 - 7\sqrt{5} + 3\sqrt{5} - 5

  3. Now combine like terms:

    215+(75+35)21 - 5 + (-7\sqrt{5} + 3\sqrt{5})

  4. Simplifying gives:

    164516 - 4\sqrt{5}

Step 2

Express \( \frac{7 + \sqrt{5}}{3 + \sqrt{5}} \) in the form \( a + b\sqrt{5} \)

99%

104 rated

Answer

To express ( \frac{7 + \sqrt{5}}{3 + \sqrt{5}} ) in the form ( a + b\sqrt{5} ):

  1. First, multiply the numerator and the denominator by the conjugate of the denominator, which is ( 3 - \sqrt{5} ):

    (7+5)(35)(3+5)(35)\frac{(7 + \sqrt{5})(3 - \sqrt{5})}{(3 + \sqrt{5})(3 - \sqrt{5})}

  2. The denominator simplifies to:

    (32(5)2=95=4(3^2 - (\sqrt{5})^2 = 9 - 5 = 4

  3. The numerator, as previously expanded, becomes:

    164516 - 4\sqrt{5}

  4. Thus, we have:

    16454=45\frac{16 - 4\sqrt{5}}{4} = 4 - \sqrt{5}

  5. From this, we can identify:

    a=4, b=1a = 4,\ b = -1

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;