Photo AI

4. (a) Write $5 ext{cos }\theta - 2 ext{sin }\theta$ in the form $R\text{cos}(\theta + \alpha)$, where $R$ and $\alpha$ are constants, $R > 0$ and $0 < \alpha < \frac{\pi}{2}$ - Edexcel - A-Level Maths Pure - Question 6 - 2017 - Paper 4

Question icon

Question 6

4.-(a)-Write-$5-ext{cos-}\theta---2-ext{sin-}\theta$-in-the-form-$R\text{cos}(\theta-+-\alpha)$,-where-$R$-and-$\alpha$-are-constants,-$R->-0$-and-$0-<-\alpha-<-\frac{\pi}{2}$-Edexcel-A-Level Maths Pure-Question 6-2017-Paper 4.png

4. (a) Write $5 ext{cos }\theta - 2 ext{sin }\theta$ in the form $R\text{cos}(\theta + \alpha)$, where $R$ and $\alpha$ are constants, $R > 0$ and $0 < \alpha < \fra... show full transcript

Worked Solution & Example Answer:4. (a) Write $5 ext{cos }\theta - 2 ext{sin }\theta$ in the form $R\text{cos}(\theta + \alpha)$, where $R$ and $\alpha$ are constants, $R > 0$ and $0 < \alpha < \frac{\pi}{2}$ - Edexcel - A-Level Maths Pure - Question 6 - 2017 - Paper 4

Step 1

Write $5\text{cos }\theta - 2\text{sin }\theta$ in the form $R\text{cos}(\theta + \alpha)$

96%

114 rated

Answer

To express 5cos θ2sin θ5\text{cos }\theta - 2\text{sin }\theta in the form Rcos(θ+α)R\text{cos}(\theta + \alpha), we can use the identity:

R=a2+b2R = \sqrt{a^2 + b^2}

where (a = 5) and (b = -2). Thus,

R=52+(2)2=25+4=29R = \sqrt{5^2 + (-2)^2} = \sqrt{25 + 4} = \sqrt{29}

Next, we find the angle α\alpha using:

tanα=ba=25\tan \alpha = \frac{b}{a} = \frac{-2}{5}

So,

α=tan1(25)0.3803(in radians).\alpha = \tan^{-1}\left(\frac{-2}{5}\right) \approx -0.3803 \, \text{(in radians)}.

To fit into the given range 0<α<π20 < \alpha < \frac{\pi}{2}, we convert:

α=π+(0.3803)2.7613extradians,roundingtothreedecimalplacesgives2.761.\alpha = \pi + (-0.3803) \approx 2.7613 ext{ radians, rounding to three decimal places gives } 2.761.

Step 2

Show that the equation can be rewritten

99%

104 rated

Answer

To rewrite the equation 5cot2x3csc2x=25\cot2x - 3\csc2x = 2, we substitute in the trigonometric identities where:

cot2x=cos2xsin2x and csc2x=1sin2x.\cot2x = \frac{\cos2x}{\sin2x} \text{ and } \csc2x = \frac{1}{\sin2x}.

Thus, the equation becomes:

5cos2xsin2x31sin2x=2.5\frac{\cos2x}{\sin2x} - 3\frac{1}{\sin2x} = 2.

Multiplying the entire equation by sin2x\sin2x leads to:

5cos2x3=2sin2x.5\cos2x - 3 = 2\sin2x.

Rearranging gives:

5cos2x2sin2x=35\cos2x - 2\sin2x = 3

This matches the required form, establishing that c=3c = 3.

Step 3

Solve for $0 \leq x < \pi$

96%

101 rated

Answer

Using the equation derived, 5cos2x2sin2x=35\cos2x - 2\sin2x = 3, we can express sin2x\sin2x in terms of cos2x\cos2x to find our solutions:

sin2x=52cos2x32.\sin2x = \frac{5}{2}\cos2x - \frac{3}{2}.

Next, we can substitute sin2x=1cos22x\sin2x = \sqrt{1 - \cos^2 2x} into the equation, further manipulating it to find:

satisfyingsatisfying5(\sqrt{1 - \cos^2 2x}) - 2\cos^2 2x = 3$$

Solving for xx in the specified interval gives:

x0.30and2.46 (to two decimal places).x \approx 0.30 \, \text{and} \, 2.46 \, \text{ (to two decimal places)}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;