Photo AI

3. (i) Express \( (5 - \sqrt{8})(1 + \sqrt{2}) \) in the form \( a + b\sqrt{2} \), where \( a \) and \( b \) are integers - Edexcel - A-Level Maths Pure - Question 5 - 2013 - Paper 3

Question icon

Question 5

3.-(i)-Express-\(-(5---\sqrt{8})(1-+-\sqrt{2})-\)-in-the-form-\(-a-+-b\sqrt{2}-\),-where-\(-a-\)-and-\(-b-\)-are-integers-Edexcel-A-Level Maths Pure-Question 5-2013-Paper 3.png

3. (i) Express \( (5 - \sqrt{8})(1 + \sqrt{2}) \) in the form \( a + b\sqrt{2} \), where \( a \) and \( b \) are integers. (ii) Express \( \sqrt{80} + \dfrac{30}{\... show full transcript

Worked Solution & Example Answer:3. (i) Express \( (5 - \sqrt{8})(1 + \sqrt{2}) \) in the form \( a + b\sqrt{2} \), where \( a \) and \( b \) are integers - Edexcel - A-Level Maths Pure - Question 5 - 2013 - Paper 3

Step 1

Express \( (5 - \sqrt{8})(1 + \sqrt{2}) \) in the form \( a + b\sqrt{2} \)

96%

114 rated

Answer

To solve this, we will expand the expression:

  1. Apply the distributive property: [(5 - \sqrt{8})(1 + \sqrt{2}) = 5 \cdot 1 + 5 \cdot \sqrt{2} - \sqrt{8} \cdot 1 - \sqrt{8} \cdot \sqrt{2}] [= 5 + 5\sqrt{2} - \sqrt{8} - \sqrt{16}] [= 5 + 5\sqrt{2} - 2\sqrt{2} - 4]

  2. Combine like terms: [= (5 - 4) + (5 - 2)\sqrt{2} = 1 + 3\sqrt{2}]

Thus, we have ( a = 1 ) and ( b = 3 ).

Step 2

Express \( \sqrt{80} + \dfrac{30}{\sqrt{5}} \) in the form \( c\sqrt{5} \)

99%

104 rated

Answer

  1. Simplify ( \sqrt{80} ): [\sqrt{80} = \sqrt{16 \cdot 5} = \sqrt{16} \cdot \sqrt{5} = 4\sqrt{5}]

  2. Rationalize the denominator for ( \dfrac{30}{\sqrt{5}} ): [\dfrac{30}{\sqrt{5}} \cdot \dfrac{\sqrt{5}}{\sqrt{5}} = \dfrac{30\sqrt{5}}{5} = 6\sqrt{5}]

  3. Combine like terms: [4\sqrt{5} + 6\sqrt{5} = (4 + 6)\sqrt{5} = 10\sqrt{5}]

Thus, we have ( c = 10 ).

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;