Photo AI

Given the function: $$f(x) = x^3 + 3x^2 + 5.$$ Find (a) $f''(x)$, (b) $\int_{1}^{2} f(x) \, dx$. - Edexcel - A-Level Maths Pure - Question 3 - 2007 - Paper 2

Question icon

Question 3

Given-the-function:--$$f(x)-=-x^3-+-3x^2-+-5.$$----Find---(a)-$f''(x)$,---(b)-$\int_{1}^{2}-f(x)-\,-dx$.-Edexcel-A-Level Maths Pure-Question 3-2007-Paper 2.png

Given the function: $$f(x) = x^3 + 3x^2 + 5.$$ Find (a) $f''(x)$, (b) $\int_{1}^{2} f(x) \, dx$.

Worked Solution & Example Answer:Given the function: $$f(x) = x^3 + 3x^2 + 5.$$ Find (a) $f''(x)$, (b) $\int_{1}^{2} f(x) \, dx$. - Edexcel - A-Level Maths Pure - Question 3 - 2007 - Paper 2

Step 1

(a) $f''(x)$

96%

114 rated

Answer

To find the second derivative of the function, we first need to compute the first derivative, f(x)f'(x).

Starting with:

f(x)=x3+3x2+5f(x) = x^3 + 3x^2 + 5

we differentiate with respect to xx:

f(x)=3x2+6x.f'(x) = 3x^2 + 6x.

Next, we differentiate again to find f(x)f''(x):

f(x)=6x+6.f''(x) = 6x + 6.

Thus, the answer is:

f(x)=6x+6.f''(x) = 6x + 6.

Step 2

(b) $\int_{1}^{2} f(x) \, dx$

99%

104 rated

Answer

To solve the integral 12f(x)dx\int_{1}^{2} f(x) \, dx, we substitute f(x)f(x) into the integral:

12(x3+3x2+5)dx.\int_{1}^{2} (x^3 + 3x^2 + 5) \, dx.

This breaks down into three separate integrals:

=12x3dx+123x2dx+125dx.= \int_{1}^{2} x^3 \, dx + \int_{1}^{2} 3x^2 \, dx + \int_{1}^{2} 5 \, dx.

Calculating each integral:

  1. For x3dx\int x^3 \, dx, we have: x44\frac{x^4}{4} evaluated from 1 to 2 gives: [244144]=[16414]=154.\left[\frac{2^4}{4} - \frac{1^4}{4}\right] = \left[\frac{16}{4} - \frac{1}{4}\right] = \frac{15}{4}.

  2. For 3x2dx\int 3x^2 \, dx, we have: 3x33=x33 \cdot \frac{x^3}{3} = x^3 evaluated from 1 to 2 gives: [2313]=81=7.\left[2^3 - 1^3\right] = 8 - 1 = 7.

  3. For 5dx\int 5 \, dx, we have: 5x5x evaluated from 1 to 2 gives: 5(2)5(1)=105=5.5(2) - 5(1) = 10 - 5 = 5.

Now, summing these results together:

=154+7+5=154+284+204=634.= \frac{15}{4} + 7 + 5 = \frac{15}{4} + \frac{28}{4} + \frac{20}{4} = \frac{63}{4}.

Thus, the final answer is:

12f(x)dx=634.\int_{1}^{2} f(x) \, dx = \frac{63}{4}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;