Photo AI

Find the value of (a) $25^{\frac{1}{2}}$ (b) $25^{-\frac{3}{2}}$ - Edexcel - A-Level Maths Pure - Question 3 - 2011 - Paper 1

Question icon

Question 3

Find-the-value-of--(a)-$25^{\frac{1}{2}}$--(b)-$25^{-\frac{3}{2}}$-Edexcel-A-Level Maths Pure-Question 3-2011-Paper 1.png

Find the value of (a) $25^{\frac{1}{2}}$ (b) $25^{-\frac{3}{2}}$

Worked Solution & Example Answer:Find the value of (a) $25^{\frac{1}{2}}$ (b) $25^{-\frac{3}{2}}$ - Edexcel - A-Level Maths Pure - Question 3 - 2011 - Paper 1

Step 1

(a) $25^{\frac{1}{2}}$

96%

114 rated

Answer

To find the value of 251225^{\frac{1}{2}}, we recognize that this expression represents the square root of 25.

Hence, 2512=25=5.25^{\frac{1}{2}} = \sqrt{25} = 5.

Therefore, the answer is 55.

Step 2

(b) $25^{-\frac{3}{2}}$

99%

104 rated

Answer

To evaluate 253225^{-\frac{3}{2}}, we first consider the reciprocal of the base raised to the positive exponent:

2532=12532.25^{-\frac{3}{2}} = \frac{1}{25^{\frac{3}{2}}}.

Now, we compute 253225^{\frac{3}{2}}:

2532=(2512)3=(25)3=53=125.25^{\frac{3}{2}} = (25^{\frac{1}{2}})^3 = (\sqrt{25})^3 = 5^3 = 125.

Substituting this back, we get:

2532=1125.25^{-\frac{3}{2}} = \frac{1}{125}.

So, the answer is 1125\frac{1}{125} or 0.0080.008.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;