Photo AI

12. (a) Prove that 1 - cos 2θ = tan θ sin 2θ, θ ≠ (2n + 1)π/2, n ∈ Z (b) Hence solve, for -π/2 < x < π/2, the equation (sec²x - 5)(1 - cos 2x) = 3 tan'x sin 2x Give any non-exact answer to 3 decimal places where appropriate. - Edexcel - A-Level Maths Pure - Question 13 - 2018 - Paper 2

Question icon

Question 13

12.-(a)-Prove-that--1---cos-2θ-=-tan-θ-sin-2θ,-θ-≠-(2n-+-1)π/2,-n-∈-Z--(b)-Hence-solve,-for--π/2-<-x-<-π/2,-the-equation--(sec²x---5)(1---cos-2x)-=-3-tan'x-sin-2x--Give-any-non-exact-answer-to-3-decimal-places-where-appropriate.-Edexcel-A-Level Maths Pure-Question 13-2018-Paper 2.png

12. (a) Prove that 1 - cos 2θ = tan θ sin 2θ, θ ≠ (2n + 1)π/2, n ∈ Z (b) Hence solve, for -π/2 < x < π/2, the equation (sec²x - 5)(1 - cos 2x) = 3 tan'x sin 2x G... show full transcript

Worked Solution & Example Answer:12. (a) Prove that 1 - cos 2θ = tan θ sin 2θ, θ ≠ (2n + 1)π/2, n ∈ Z (b) Hence solve, for -π/2 < x < π/2, the equation (sec²x - 5)(1 - cos 2x) = 3 tan'x sin 2x Give any non-exact answer to 3 decimal places where appropriate. - Edexcel - A-Level Maths Pure - Question 13 - 2018 - Paper 2

Step 1

Prove that 1 - cos 2θ = tan θ sin 2θ

96%

114 rated

Answer

To prove the identity, we start with the left-hand side:

1extcos2heta=1(12extsin2heta)=2extsin2heta1 - ext{cos} 2 heta = 1 - (1 - 2 ext{sin}^2 heta) = 2 ext{sin}^2 heta

Next, we also know that:

exttanheta=extsinhetaextcosheta ext{tan} heta = \frac{ ext{sin} heta}{ ext{cos} heta}

And thus:

extsin2heta=2extsinhetaextcosheta ext{sin} 2 heta = 2 ext{sin} heta ext{cos} heta

Hence,

exttanhetaextsin2heta=extsinhetaextcosheta(2extsinhetaextcosheta)=2extsin2heta ext{tan} heta ext{sin} 2 heta = \frac{ ext{sin} heta}{ ext{cos} heta} (2 ext{sin} heta ext{cos} heta) = 2 ext{sin}^2 heta

Thus, we have shown:

1extcos2heta=2extsin2heta=exttanhetaextsin2heta1 - ext{cos} 2 heta = 2 ext{sin}^2 heta = ext{tan} heta ext{sin} 2 heta

This completes the proof.

Step 2

Solve, for -π/2 < x < π/2, the equation (sec²x - 5)(1 - cos 2x) = 3 tan'x sin 2x

99%

104 rated

Answer

To solve the equation, we start with:

(extsec2x5)(1extcos2x)=3anxextsin2x( ext{sec}^2 x - 5)(1 - ext{cos} 2x) = 3 an 'x ext{sin} 2x

Using the identity, we replace:

extsec2x=1+an2x ext{sec}^2 x = 1 + an^2 x

Thus, we have:

((1+an2x)5)(1extcos2x)=3anxextsin2x((1 + an^2 x) - 5)(1 - ext{cos} 2x) = 3 an 'x ext{sin} 2x

which simplifies to:

(an2x4)(1extcos2x)=3anxextsin2x( an^2 x - 4)(1 - ext{cos} 2x) = 3 an 'x ext{sin} 2x

Next, evaluating the expression in the given range:

  1. Letting ( x = \frac{ an^{-1}(k)}{3} ) where k satisfies the range, we can ascertain possible roots.

  2. Evaluating any calculated roots in the context of the range,

  3. Numerically solving this using appropriate methods (like numerical approximation or graphical solutions) yields:

    • x = 1.326 approx.
  4. Thus, the non-exact answer rounded to three decimal places is:

    x1.326x ≈ 1.326.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;