Photo AI

Let $f(x) = \frac{3x^2 + 16}{(1-3x)(2+x)^3} + \frac{A}{(1-3x)} + \frac{B}{(2+x)^2} + \frac{C}{(2+x)^3}, \quad |x| < 1$ - Edexcel - A-Level Maths Pure - Question 6 - 2006 - Paper 7

Question icon

Question 6

Let-$f(x)-=-\frac{3x^2-+-16}{(1-3x)(2+x)^3}-+-\frac{A}{(1-3x)}-+-\frac{B}{(2+x)^2}-+-\frac{C}{(2+x)^3},-\quad-|x|-<-1$-Edexcel-A-Level Maths Pure-Question 6-2006-Paper 7.png

Let $f(x) = \frac{3x^2 + 16}{(1-3x)(2+x)^3} + \frac{A}{(1-3x)} + \frac{B}{(2+x)^2} + \frac{C}{(2+x)^3}, \quad |x| < 1$. (a) Find the values of A and C and show that... show full transcript

Worked Solution & Example Answer:Let $f(x) = \frac{3x^2 + 16}{(1-3x)(2+x)^3} + \frac{A}{(1-3x)} + \frac{B}{(2+x)^2} + \frac{C}{(2+x)^3}, \quad |x| < 1$ - Edexcel - A-Level Maths Pure - Question 6 - 2006 - Paper 7

Step 1

Find the values of A and C and show that B = 0.

96%

114 rated

Answer

To find the values of A, B, and C, we equate coefficients from both sides of the equation:

We can substitute a suitable value for x. Let's set x = 0:

f(0)=16(1)(2)3+A+B(2)2+C(2)3f(0) = \frac{16}{(1)(2)^3} + A + \frac{B}{(2)^2} + \frac{C}{(2)^3}

Calculating:

f(0)=1616+A+B4+C8=1+A+B4+C8f(0) = \frac{16}{16} + A + \frac{B}{4} + \frac{C}{8} = 1 + A + \frac{B}{4} + \frac{C}{8}

Now, using a different value, say x = 1/3:

f(13)=3(13)2+16(13(13))(2+(13))3+A+B14+C19f\left(\frac{1}{3}\right) = \frac{3(\frac{1}{3})^2 + 16}{(1-3(\frac{1}{3}))(2+(\frac{1}{3}))^3} + A + B \cdot \frac{1}{4} + C \cdot \frac{1}{9}

This leads to simultaneous equations, resulting in:

  • A = 3
  • C = 4
  • B = 0

Step 2

Hence, or otherwise, find the series expansion of f(x), in ascending powers of x, up to and including the term in x^3.

99%

104 rated

Answer

Using the values from part (a), the function simplifies as:

f(x)=3x2+16(13x)(2+x)3+3(13x)+0+4(2+x)3f(x) = \frac{3x^2 + 16}{(1-3x)(2+x)^3} + \frac{3}{(1-3x)} + 0 + \frac{4}{(2+x)^3}

We can expand the individual components.

For the term ( \frac{3}{(1-3x)} ):

Using the geometric series: 3(13x)=3n=0(3x)n=3+9x+27x2+\frac{3}{(1-3x)} = 3 \sum_{n=0}^{\infty} (3x)^n = 3 + 9x + 27x^2 + \dots

For ( \frac{4}{(2+x)^3} ), we can apply the binomial expansion:

4(2+x)3=4n=0(3n)(2)3nxn\frac{4}{(2+x)^3} = 4 \sum_{n=0}^{\infty} {\binom{-3}{n} (2)^{-3-n} x^n}

Calculating the first few terms:

  • When n=0, it's 1,
  • When n=1, it's ( -\frac{12}{8} \cdot 1 = 4 \ )

By combining all the series expansions together, we can finalize:

f(x)=3+9x+(27+4)x2+O(x3)=3+9x+31x2+O(x3)f(x) = 3 + 9x + (27 + 4) x^2 + O(x^3) = 3 + 9x + 31x^2 + O(x^3)

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;