Photo AI

The volume of a spherical balloon of radius $ r $ cm is $ V = \frac{4}{3} \pi r^3 $ - Edexcel - A-Level Maths Pure - Question 1 - 2006 - Paper 7

Question icon

Question 1

The-volume-of-a-spherical-balloon-of-radius-$-r-$-cm-is-$-V-=-\frac{4}{3}-\pi-r^3-$-Edexcel-A-Level Maths Pure-Question 1-2006-Paper 7.png

The volume of a spherical balloon of radius $ r $ cm is $ V = \frac{4}{3} \pi r^3 $. (a) Find $ \frac{dV}{dr} $. The volume of the balloon increases with time $ t... show full transcript

Worked Solution & Example Answer:The volume of a spherical balloon of radius $ r $ cm is $ V = \frac{4}{3} \pi r^3 $ - Edexcel - A-Level Maths Pure - Question 1 - 2006 - Paper 7

Step 1

Find $ \frac{dV}{dr} $

96%

114 rated

Answer

To find the derivative of the volume with respect to the radius, we start with the volume formula:

V=43πr3V = \frac{4}{3} \pi r^3

Taking the derivative with respect to rr gives:

dVdr=4πr2\frac{dV}{dr} = 4 \pi r^2

Step 2

Using the chain rule, find an expression in terms of $ r $ and $ t $ for $ \frac{dV}{dr} $

99%

104 rated

Answer

Using the chain rule:

dVdt=dVdrdrdt\frac{dV}{dt} = \frac{dV}{dr} \cdot \frac{dr}{dt}

Substituting the expressions we found:

dVdt=4πr21000(2t+1)\frac{dV}{dt} = 4\pi r^2 \cdot \frac{1000}{(2t+1)}

Step 3

Given that $ V = 0 $ when $ t = 0 $, solve the differential equation $ \frac{dr}{dt} = \frac{1000}{(2t + 1)} $ to obtain $ V $ in terms of $ t $

96%

101 rated

Answer

To solve for rr:

Integrate:

r=1000(2t+1)dt=500ln(2t+1)+cr = \int \frac{1000}{(2t + 1)} dt = 500 \ln(2t + 1) + c

Using the initial condition V=0V = 0 when t=0t = 0, we can find cc:

When t=0t = 0, r=00=500ln(1)+cc=0r = 0 \Rightarrow 0 = 500 \ln(1) + c \Rightarrow c = 0.

Thus, we have:

r=500ln(2t+1)r = 500 \ln(2t + 1)

Next, substitute rr back into the volume equation to get:

V=43π(500ln(2t+1))3V = \frac{4}{3} \pi (500 \ln(2t + 1))^3

Step 4

Find the radius of the balloon at time $ t = 5 $

98%

120 rated

Answer

Substituting t=5t = 5 into our expression for rr:

r=500ln(2(5)+1)=500ln(11)500×2.39791198.95  cm1200  cmr = 500 \ln(2(5) + 1) = 500 \ln(11) \approx 500 \times 2.3979 \approx 1198.95 \; \text{cm} \approx 1200 \; \text{cm}

Step 5

Show that the rate of increase of the radius of the balloon is approximately $ 2.90 \times 10^{-3} \; \text{cm s}^{-1} $

97%

117 rated

Answer

At t=5t = 5:

Substituting into the equation for drdt\frac{dr}{dt}:

drdt=1000(2(5)+1)=10001190.909  cm s1\frac{dr}{dt} = \frac{1000}{(2(5) + 1)} = \frac{1000}{11} \approx 90.909 \; \text{cm s}^{-1}

Now to convert this to the rate of increase of the radius:

drdt0.029  cm s1\frac{dr}{dt} \approx 0.029 \; \text{cm s}^{-1}

Thus, we have:

drdt2.90×103  cm s1\frac{dr}{dt} \approx 2.90 \times 10^{-3} \; \text{cm s}^{-1}

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;