Photo AI

(a) Find the binomial expansion of $(4 + 5x)^{\frac{1}{2}}$, $|x| < \frac{4}{5}$ Give each coefficient in its simplest form - Edexcel - A-Level Maths Pure - Question 3 - 2015 - Paper 4

Question icon

Question 3

(a)-Find-the-binomial-expansion-of--$(4-+-5x)^{\frac{1}{2}}$,--$|x|-<-\frac{4}{5}$-Give-each-coefficient-in-its-simplest-form-Edexcel-A-Level Maths Pure-Question 3-2015-Paper 4.png

(a) Find the binomial expansion of $(4 + 5x)^{\frac{1}{2}}$, $|x| < \frac{4}{5}$ Give each coefficient in its simplest form. (b) Find the exact value of $(4 + 5x)... show full transcript

Worked Solution & Example Answer:(a) Find the binomial expansion of $(4 + 5x)^{\frac{1}{2}}$, $|x| < \frac{4}{5}$ Give each coefficient in its simplest form - Edexcel - A-Level Maths Pure - Question 3 - 2015 - Paper 4

Step 1

Find the binomial expansion of $(4 + 5x)^{\frac{1}{2}}$

96%

114 rated

Answer

To find the binomial expansion of (4+5x)12(4 + 5x)^{\frac{1}{2}}, we can use the binomial theorem, which states: (a+b)n=k=0n(nk)ankbk(a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k In our case, let:

  • a=4a = 4
  • b=5xb = 5x
  • n=12n = \frac{1}{2}

We can then compute the first three terms of the expansion:

  1. For k=0k = 0: (120)(4)12(5x)0=121=2\binom{\frac{1}{2}}{0} (4)^{\frac{1}{2}}(5x)^0 = 1 \cdot 2 \cdot 1 = 2
  2. For k=1k = 1: (121)(4)12(5x)1=1225x=5x\binom{\frac{1}{2}}{1} (4)^{\frac{1}{2}}(5x)^1 = \frac{1}{2} \cdot 2 \cdot 5x = 5x
  3. For k=2k = 2: (122)(4)12(5x)2=12(121)2!2(5x)2=52x28=25x28\binom{\frac{1}{2}}{2} (4)^{\frac{1}{2}}(5x)^2 = \frac{\frac{1}{2}(\frac{1}{2}-1)}{2!} \cdot 2 \cdot (5x)^2 = -\frac{5^2 \cdot x^2}{8} = -\frac{25x^2}{8}

Therefore, the binomial expansion up to and including the term in x2x^2 in simplest form is: 2+5x258x22 + 5x - \frac{25}{8}x^2

Step 2

Find the exact value of $(4 + 5x)^{\frac{1}{2}}$ when $x = \frac{1}{10}$

99%

104 rated

Answer

Substituting x=110x = \frac{1}{10} into the expansion: 2+5(110)258(110)22 + 5 \left(\frac{1}{10}\right) - \frac{25}{8} \left(\frac{1}{10}\right)^2 Calculating term by term:

  1. The first term is 22.
  2. The second term is 5110=125 \cdot \frac{1}{10} = \frac{1}{2}.
  3. The third term is 2581100=25800=132-\frac{25}{8} \cdot \frac{1}{100} = -\frac{25}{800} = -\frac{1}{32}.

Now, combine the terms: 2+121322 + \frac{1}{2} - \frac{1}{32} To add these, we convert to a common denominator (32): =6432+1632132=7932= \frac{64}{32} + \frac{16}{32} - \frac{1}{32} = \frac{79}{32} Thus, we can write: 7932=k2, where k=79322\frac{79}{32} = k \sqrt{2}, \text{ where } k = \frac{79}{32 \sqrt{2}}

Step 3

Substitute $x = \frac{1}{10}$ into your binomial expansion from part (a) and hence find an approximate value for $\sqrt{2}$

96%

101 rated

Answer

Using the expansion from part (a), we substitute x=110x = \frac{1}{10} again: 2+5110258(110)22 + 5 \cdot \frac{1}{10} - \frac{25}{8} \cdot \left(\frac{1}{10}\right)^2 This gives us: 2+12258002 + \frac{1}{2} - \frac{25}{800} Following the same calculations:

  1. The first term: 2=64322 = \frac{64}{32}
  2. The second term: 12=1632\frac{1}{2} = \frac{16}{32}
  3. The third term: 132-\frac{1}{32}

Combine them: 64+16132=7932\frac{64 + 16 - 1}{32} = \frac{79}{32} This gives us an approximation for 2\sqrt{2}: 2pq=7932\sqrt{2} \approx \frac{p}{q} = \frac{79}{32}

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;