Photo AI

6. (a) Find \( \int \tan x \, dx \) - Edexcel - A-Level Maths Pure - Question 1 - 2008 - Paper 3

Question icon

Question 1

6.-(a)-Find-\(-\int-\tan-x-\,-dx-\)-Edexcel-A-Level Maths Pure-Question 1-2008-Paper 3.png

6. (a) Find \( \int \tan x \, dx \). (b) Use integration by parts to find \( \int \frac{\ln x}{x^3} \, dx \). (c) Use the substitution \( u = 1 + e^x \) to s... show full transcript

Worked Solution & Example Answer:6. (a) Find \( \int \tan x \, dx \) - Edexcel - A-Level Maths Pure - Question 1 - 2008 - Paper 3

Step 1

Find \( \int \tan x \, dx \)

96%

114 rated

Answer

To find the integral of ( \tan x ), we can use the identity ( \tan x = \frac{\sin x}{\cos x} ). Thus, we have:

tanxdx=sinxcosxdx\int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx

This can be solved using substitution: let ( u = \cos x ), which gives ( du = -\sin x , dx ). Therefore, the integral becomes:

1udu=lnu+c=lncosx+c-\int \frac{1}{u} \, du = -\ln|u| + c = -\ln|\cos x| + c

Consequently, the result is:

tanxdx=lncosx+c\int \tan x \, dx = -\ln|\cos x| + c

Step 2

Use integration by parts to find \( \int \frac{\ln x}{x^3} \, dx \)

99%

104 rated

Answer

To solve this using integration by parts, we let:

  • ( u = \ln x )
  • ( dv = \frac{1}{x^3} , dx )

We differentiate and integrate:

  • ( du = \frac{1}{x} , dx )
  • ( v = -\frac{1}{2x^2} )

Applying the integration by parts formula ( \int u , dv = uv - \int v , du ):

lnxx3dx=lnx2x212x21xdx\int \frac{\ln x}{x^3} \, dx = -\frac{\ln x}{2x^2} - \int -\frac{1}{2x^2} \cdot \frac{1}{x} \, dx

Which simplifies to:

=lnx2x2+12x3dx= -\frac{\ln x}{2x^2} + \frac{1}{2} \int x^{-3} \, dx

Now integrating ( x^{-3} ) gives:

=lnx2x214x2+c= -\frac{\ln x}{2x^2} - \frac{1}{4x^2} + c

Step 3

Use the substitution \( u = 1 + e^x \) to show that \( \int \frac{e^x}{1 + e^x} \, dx = \frac{1}{2} e^{-x} - e^{-x} \ln(1 + e^x) + k \)

96%

101 rated

Answer

Using the substitution ( u = 1 + e^x ), we find:

  1. Differentiate to get ( du = e^x , dx ) or ( dx = \frac{du}{e^x} = \frac{du}{u - 1} ).

  2. Substitute into the integral:

ex1+exdx=1udu\int \frac{e^x}{1 + e^x} \, dx = \int \frac{1}{u} \, du

  1. Integrating gives:

=lnu+c=ln(1+ex)+c= \ln|u| + c = \ln(1 + e^x) + c

  1. Now, to find ( e^{-x} ), we can express it as follows:

=1ex=1u1= \frac{1}{e^x} = \frac{1}{u - 1}

By back-substituting:

Therefore, we can derive:

ex1+exdx=12exexln(1+ex)+k\int \frac{e^x}{1 + e^x} \, dx = \frac{1}{2} e^{-x} - e^{-x} \ln(1 + e^x) + k

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;