Photo AI

The curve C has equation $y = \frac{\ln(x^2 + 1)}{x^2 + 1}, \quad x \in \mathbb{R}$ (a) Find $\frac{dy}{dx}$ as a single fraction, simplifying your answer - Edexcel - A-Level Maths Pure - Question 8 - 2018 - Paper 5

Question icon

Question 8

The-curve-C-has-equation---$y-=-\frac{\ln(x^2-+-1)}{x^2-+-1},-\quad-x-\in-\mathbb{R}$----(a)-Find-$\frac{dy}{dx}$-as-a-single-fraction,-simplifying-your-answer-Edexcel-A-Level Maths Pure-Question 8-2018-Paper 5.png

The curve C has equation $y = \frac{\ln(x^2 + 1)}{x^2 + 1}, \quad x \in \mathbb{R}$ (a) Find $\frac{dy}{dx}$ as a single fraction, simplifying your answer. (... show full transcript

Worked Solution & Example Answer:The curve C has equation $y = \frac{\ln(x^2 + 1)}{x^2 + 1}, \quad x \in \mathbb{R}$ (a) Find $\frac{dy}{dx}$ as a single fraction, simplifying your answer - Edexcel - A-Level Maths Pure - Question 8 - 2018 - Paper 5

Step 1

Find $\frac{dy}{dx}$ as a single fraction, simplifying your answer.

96%

114 rated

Answer

To find dydx\frac{dy}{dx}, we will use the quotient rule. Let:

  • u=ln(x2+1)u = \ln(x^2 + 1)
  • v=x2+1v = x^2 + 1
    Thus, we have:

dydx=vdudxudvdxv2\frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}

Calculating dudx\frac{du}{dx} and dvdx\frac{dv}{dx}:

  • dudx=2xx2+1\frac{du}{dx} = \frac{2x}{x^2 + 1}
  • dvdx=2x\frac{dv}{dx} = 2x

Substituting these values into the formula gives:

dydx=(x2+1)2xx2+1ln(x2+1)2x(x2+1)2\frac{dy}{dx} = \frac{(x^2 + 1) \cdot \frac{2x}{x^2 + 1} - \ln(x^2 + 1) \cdot 2x}{(x^2 + 1)^2}

This simplifies to:

dydx=2x2xln(x2+1)(x2+1)2=2x(1ln(x2+1))(x2+1)2\frac{dy}{dx} = \frac{2x - 2x \ln(x^2 + 1)}{(x^2 + 1)^2} = \frac{2x (1 - \ln(x^2 + 1))}{(x^2 + 1)^2}

Step 2

Hence find the exact coordinates of the stationary points of C.

99%

104 rated

Answer

To find the stationary points, we set dydx=0\frac{dy}{dx} = 0:

2x(1ln(x2+1))=02x (1 - \ln(x^2 + 1)) = 0

This gives two possible cases:

  1. 2x=0x=02x = 0 \Rightarrow x = 0
  2. 1ln(x2+1)=0ln(x2+1)=1x2+1=ex2=e1x=±e11 - \ln(x^2 + 1) = 0 \Rightarrow \ln(x^2 + 1) = 1 \Rightarrow x^2 + 1 = e \Rightarrow x^2 = e - 1 \Rightarrow x = \pm \sqrt{e - 1}

Now we find the corresponding y-values:

  • For x=0x = 0:
    y(0)=ln(02+1)02+1=ln(1)1=0y(0) = \frac{\ln(0^2 + 1)}{0^2 + 1} = \frac{\ln(1)}{1} = 0
  • For x=e1x = \sqrt{e - 1}:
    y=ln(e)e=1ey = \frac{\ln(e)}{e} = \frac{1}{e}
  • For x=e1x = -\sqrt{e - 1}:
    y=ln(e)e=1ey = \frac{\ln(e)}{e} = \frac{1}{e}

Thus, the exact coordinates of the stationary points are:

  • (0,0)(0, 0)
  • (e1,1e)\left( \sqrt{e - 1}, \frac{1}{e} \right)
  • (e1,1e)\left( -\sqrt{e - 1}, \frac{1}{e} \right).

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;