Photo AI

A curve has parametric equations $x = \tan^2 t, \quad y = \sin t, \quad 0 < t < \frac{\pi}{2}.$ (a) Find an expression for $\frac{dy}{dx}$ in terms of $t$ - Edexcel - A-Level Maths Pure - Question 8 - 2007 - Paper 7

Question icon

Question 8

A-curve-has-parametric-equations--$x-=-\tan^2-t,-\quad-y-=-\sin-t,-\quad-0-<-t-<-\frac{\pi}{2}.$--(a)-Find-an-expression-for-$\frac{dy}{dx}$-in-terms-of-$t$-Edexcel-A-Level Maths Pure-Question 8-2007-Paper 7.png

A curve has parametric equations $x = \tan^2 t, \quad y = \sin t, \quad 0 < t < \frac{\pi}{2}.$ (a) Find an expression for $\frac{dy}{dx}$ in terms of $t$. You nee... show full transcript

Worked Solution & Example Answer:A curve has parametric equations $x = \tan^2 t, \quad y = \sin t, \quad 0 < t < \frac{\pi}{2}.$ (a) Find an expression for $\frac{dy}{dx}$ in terms of $t$ - Edexcel - A-Level Maths Pure - Question 8 - 2007 - Paper 7

Step 1

Find an expression for $\frac{dy}{dx}$ in terms of $t$

96%

114 rated

Answer

To find dydx\frac{dy}{dx}, we will use the chain rule:

dydx=dy/dtdx/dt\frac{dy}{dx} = \frac{dy/dt}{dx/dt}

First, we compute dydt\frac{dy}{dt}:

y=sint    dydt=cost.y = \sin t \implies \frac{dy}{dt} = \cos t.

Next, we compute dxdt\frac{dx}{dt}:

x=tan2t    dxdt=2tantsec2t.x = \tan^2 t \implies \frac{dx}{dt} = 2\tan t \sec^2 t.

Now, substituting these into the formula gives:

dydx=cost2tantsec2t=cos3t2sint.\frac{dy}{dx} = \frac{\cos t}{2\tan t \sec^2 t} = \frac{\cos^3 t}{2\sin t}.

Step 2

Find an equation of the tangent to the curve at the point where $t = \frac{\pi}{4}$

99%

104 rated

Answer

  1. Evaluate xx and yy at t=π4t = \frac{\pi}{4}:

    • x=tan2π4=1x = \tan^2 \frac{\pi}{4} = 1
    • y=sinπ4=22y = \sin \frac{\pi}{4} = \frac{\sqrt{2}}{2}.
  2. Find dydx\frac{dy}{dx} at t=π4t = \frac{\pi}{4}:

    • Substitute into the expression:
      dydx=cos3π42sinπ4=(22)3222=12.\frac{dy}{dx} = \frac{\cos^3 \frac{\pi}{4}}{2 \sin \frac{\pi}{4}} = \frac{(\frac{\sqrt{2}}{2})^3}{2 \cdot \frac{\sqrt{2}}{2}} = \frac{1}{2}.
  3. Use the point-slope form of the equation:

    • The slope is 12\frac{1}{2} and point is (1,22)(1, \frac{\sqrt{2}}{2}):
    • y22=12(x1)y - \frac{\sqrt{2}}{2} = \frac{1}{2}(x - 1)
    • This rearranges to: y=12x+(2212).y = \frac{1}{2}x + \left(\frac{\sqrt{2}}{2} - \frac{1}{2}\right).

Step 3

Find a Cartesian equation of the curve in the form $y^2 = f(x)$

96%

101 rated

Answer

  1. From the parametric equations, substitute x=tan2tx = \tan^2 t:

    • We have y=sinty = \sin t.
    • To eliminate tt, we express sint\sin t in terms of xx:
    • Since tant=x\tan t = \sqrt{x}, we can use the identity:
      1+tan2t=sec2t    1+x=sec2t.1 + \tan^2 t = \sec^2 t \implies 1 + x = \sec^2 t.
  2. Now, using the relation sin2t+cos2t=1\sin^2 t + \cos^2 t = 1:

    • We find sin2t=1cos2t\sin^2 t = 1 - \cos^2 t.
    • Since cos2t=1sec2t\cos^2 t = \frac{1}{\sec^2 t}, we substitute:
      sin2t=111+x=x1+x.\sin^2 t = 1 - \frac{1}{1+x} = \frac{x}{1+x}.
  3. Therefore, we express y2y^2 in terms of xx:

    • The Cartesian equation is:
      y2=x1+x.y^2 = \frac{x}{1+x}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;