Photo AI

Differentiate with respect to $x$, giving your answer in its simplest form, (a) $x^2 \ln(3x)$ (b) $\frac{\sin 4x}{x^3}$ - Edexcel - A-Level Maths Pure - Question 3 - 2012 - Paper 6

Question icon

Question 3

Differentiate-with-respect-to-$x$,-giving-your-answer-in-its-simplest-form,--(a)-$x^2-\ln(3x)$--(b)-$\frac{\sin-4x}{x^3}$-Edexcel-A-Level Maths Pure-Question 3-2012-Paper 6.png

Differentiate with respect to $x$, giving your answer in its simplest form, (a) $x^2 \ln(3x)$ (b) $\frac{\sin 4x}{x^3}$

Worked Solution & Example Answer:Differentiate with respect to $x$, giving your answer in its simplest form, (a) $x^2 \ln(3x)$ (b) $\frac{\sin 4x}{x^3}$ - Edexcel - A-Level Maths Pure - Question 3 - 2012 - Paper 6

Step 1

(a) $x^2 \ln(3x)$

96%

114 rated

Answer

To differentiate the function f(x)=x2ln(3x)f(x) = x^2 \ln(3x), we will apply the product rule:

  1. Identify the two parts:

    • Let u=x2u = x^2 and v=ln(3x)v = \ln(3x).
  2. Differentiate each part:

    • u=ddx(x2)=2xu' = \frac{d}{dx}(x^2) = 2x
    • To differentiate v=ln(3x)v = \ln(3x), use the chain rule: v=13x3=1xv' = \frac{1}{3x} \cdot 3 = \frac{1}{x}
  3. Apply the product rule: f(x)=uv+uvf'(x) = u'v + uv' f(x)=(2x)(ln(3x))+(x2)(1x)f'(x) = (2x)(\ln(3x)) + (x^2)(\frac{1}{x})

  4. Simplify the expression: f(x)=2xln(3x)+xf'(x) = 2x \ln(3x) + x

Combining terms gives: f(x)=2xln(3x)+xf'(x) = 2x \ln(3x) + x

Step 2

(b) $\frac{\sin 4x}{x^3}$

99%

104 rated

Answer

To differentiate the function g(x)=sin4xx3g(x) = \frac{\sin 4x}{x^3}, we will use the quotient rule:

  1. Identify the numerator and denominator:

    • Let u=sin(4x)u = \sin(4x) and v=x3v = x^3.
  2. Differentiate each part:

    • u=ddx(sin(4x))=4cos(4x)u' = \frac{d}{dx}(\sin(4x)) = 4\cos(4x)
    • v=ddx(x3)=3x2v' = \frac{d}{dx}(x^3) = 3x^2
  3. Apply the quotient rule: g(x)=uvuvv2g'(x) = \frac{u'v - uv'}{v^2} g(x)=4cos(4x)x3sin(4x)3x2(x3)2g'(x) = \frac{4\cos(4x) \cdot x^3 - \sin(4x) \cdot 3x^2}{(x^3)^2}

  4. Simplify the expression: g(x)=4x3cos(4x)3x2sin(4x)x6g'(x) = \frac{4x^3 \cos(4x) - 3x^2 \sin(4x)}{x^6} g(x)=4cos(4x)3sin(4x)xx3g'(x) = \frac{4\cos(4x) - 3 \frac{\sin(4x)}{x}}{x^3}

Thus, the final solution for (b) in its simplest form is: g(x)=4cos(4x)3sin(4x)xx3g'(x) = \frac{4\cos(4x) - 3 \frac{\sin(4x)}{x}}{x^3}

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;