Photo AI

Using the identity cos(A + B) = cos A cos B - sin A sin B, prove that cos 2A = 1 - 2 sin² A - Edexcel - A-Level Maths Pure - Question 7 - 2005 - Paper 5

Question icon

Question 7

Using-the-identity-cos(A-+-B)-=-cos-A-cos-B---sin-A-sin-B,-prove-that-cos-2A-=-1---2-sin²-A-Edexcel-A-Level Maths Pure-Question 7-2005-Paper 5.png

Using the identity cos(A + B) = cos A cos B - sin A sin B, prove that cos 2A = 1 - 2 sin² A. Show that 2 sin 2θ - 3 cos 2θ - 3 sin θ + 3 = sin θ(4 cos θ + 6 sin θ -... show full transcript

Worked Solution & Example Answer:Using the identity cos(A + B) = cos A cos B - sin A sin B, prove that cos 2A = 1 - 2 sin² A - Edexcel - A-Level Maths Pure - Question 7 - 2005 - Paper 5

Step 1

Using the identity cos(A + B) = cos A cos B - sin A sin B, prove that cos 2A = 1 - 2 sin² A.

96%

114 rated

Answer

To prove this, start with the identity for cosine:

egin{align*} ext{cos}(2A) &= ext{cos}(A + A) \ &= ext{cos} A ext{cos} A - ext{sin} A ext{sin} A \ &= ext{cos}^2 A - ext{sin}^2 A \ \ &= 1 - ext{sin}^2 A - ext{sin}^2 A \ &= 1 - 2 ext{sin}^2 A. ext{This completes the proof.} \end{align*}

Step 2

Show that 2 sin 2θ - 3 cos 2θ - 3 sin θ + 3 = sin θ(4 cos θ + 6 sin θ - 3).

99%

104 rated

Answer

We start with the left-hand side:

egin{align*} 2 ext{sin}(2 heta) - 3 ext{cos}(2 heta) - 3 ext{sin} heta + 3 &= 2(2 ext{sin} heta ext{cos} heta) - 3(1 - 2 ext{sin}^2 heta) - 3 ext{sin} heta + 3 \ &= 4 ext{sin} heta ext{cos} heta - 3 + 6 ext{sin}^2 heta - 3 ext{sin} heta + 3 \ &= 4 ext{sin} heta ext{cos} heta + 6 ext{sin}^2 heta - 3 ext{sin} heta.\ \ ext{Factor out } ext{sin} heta: \ &= ext{sin} heta(4 ext{cos} heta + 6 ext{sin} heta - 3). ext{This establishes the equality.} \end{align*}

Step 3

Express 4 cos θ + 6 sin θ in the form R sin(θ + α), where R > 0 and 0 < α < π/2.

96%

101 rated

Answer

To express this in the required form, we start by determining R and α:

  1. Calculate R:

R=extsqrt(42+62)=extsqrt(16+36)=extsqrt(52)=2extsqrt(13)7.21. R = ext{sqrt}(4^2 + 6^2) = ext{sqrt}(16 + 36) = ext{sqrt}(52) = 2 ext{sqrt}(13) \approx 7.21.

  1. Find α using:
α = ext{tan}^{-1}(1.5) \approx 0.588.$$ Thus, the expression becomes: $$ 4 ext{cos} θ + 6 ext{sin} θ = R ext{sin}(θ + α). $$

Step 4

Hence, for 0 ≤ θ < π, solve 2 sin 2θ = rac{3}{2}(cos 2θ + sin θ - 1).

98%

120 rated

Answer

From the previous steps, we have:

  1. Rewrite the equation:

2 ext{sin}(2 heta) = rac{3}{2}( ext{cos}(2 heta) + ext{sin} heta - 1).

  1. Solve for θ:

Using numerical methods or graphing techniques, we find:

hetaextvaluesare:2.12,0.588,extandothersundergivenconstraints. heta ext{ values are: } 2.12, 0.588, ext{and others under given constraints.}

  1. The solutions in radians to 3 significant figures are:

hetaextvalues:2.12,0.588. heta ext{ values: } 2.12, 0.588.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;