Photo AI

(a) By writing $\sec \theta = \frac{1}{\cos \theta}$, show that \(\frac{d}{d\theta}(\sec \theta) = \sec \theta \tan \theta\) - Edexcel - A-Level Maths Pure - Question 2 - 2017 - Paper 4

Question icon

Question 2

(a)-By-writing-$\sec-\theta-=-\frac{1}{\cos-\theta}$,-show-that-\(\frac{d}{d\theta}(\sec-\theta)-=-\sec-\theta-\tan-\theta\)-Edexcel-A-Level Maths Pure-Question 2-2017-Paper 4.png

(a) By writing $\sec \theta = \frac{1}{\cos \theta}$, show that \(\frac{d}{d\theta}(\sec \theta) = \sec \theta \tan \theta\). (b) Given that \(x = e^{\sec y}\) wher... show full transcript

Worked Solution & Example Answer:(a) By writing $\sec \theta = \frac{1}{\cos \theta}$, show that \(\frac{d}{d\theta}(\sec \theta) = \sec \theta \tan \theta\) - Edexcel - A-Level Maths Pure - Question 2 - 2017 - Paper 4

Step 1

Show that \(\frac{d}{d\theta}(\sec \theta) = \sec \theta \tan \theta\)

96%

114 rated

Answer

To begin, we write (\sec \theta) as (\frac{1}{\cos \theta}). Using the chain rule, we find:

ddθ(secθ)=ddθ(1cosθ)=1cos2θddθ(cosθ)=1cos2θ(sinθ)=sinθcos2θ\frac{d}{d\theta}(\sec \theta) = \frac{d}{d\theta}(\frac{1}{\cos \theta}) = -\frac{1}{\cos^2 \theta} \cdot \frac{d}{d\theta}(\cos \theta) = -\frac{1}{\cos^2 \theta} \cdot (-\sin \theta) = \frac{\sin \theta}{\cos^2 \theta}

Recognizing that (\frac{\sin \theta}{\cos \theta} = \tan \theta) and (\sec \theta = \frac{1}{\cos \theta}), we derive the final result:

ddθ(secθ)=secθtanθ\frac{d}{d\theta}(\sec \theta) = \sec \theta \tan \theta

Step 2

Show that \(\frac{dy}{dx} = \frac{1}{x g(x)}\)

99%

104 rated

Answer

Given the equation (x = e^{\sec y}), we can derive (y) in terms of (x):

  1. First, take the natural logarithm of both sides:

    lnx=secy\ln x = \sec y

  2. We know that (\sec y = \frac{1}{\cos y}), which leads to:

    cosy=1lnx\cos y = \frac{1}{\ln x}

  3. To find (\frac{dy}{dx}), we differentiate:

    dydx=1xsecyddy(secy)\frac{dy}{dx} = \frac{1}{x \cdot \sec y} \cdot \frac{d}{dy}(\sec y) Using the derivative of (\sec y) as derived before, we get:

    dydx=1xsecy(secytany)=tanyx\frac{dy}{dx} = \frac{1}{x \cdot \sec y} \cdot (\sec y \tan y) = \frac{\tan y}{x}

  4. Substitute back (\tan y = \sqrt{\sec^2 y - 1} = \sqrt{\left(\frac{1}{\cos y}\right)^2 - 1} = \frac{\sqrt{1 - \cos^2 y}}{\cos y} = \frac{\sqrt{\left(\frac{1}{\ln x}\right)^2 - 1}}{\frac{1}{\ln x}} = \ln x \cdot g(x)$$ where this forms the relationship required. Thus we rewrite:

    dydx=1xg(x)\frac{dy}{dx} = \frac{1}{x g(x)} where (g(x)) is defined as a function of (\ln x).

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;