Photo AI

Given that $x = ext{sec}^2 3y$, $0 < y < \frac{\pi}{6}$ (a) find $\frac{dx}{dy}$ in terms of $y$ - Edexcel - A-Level Maths Pure - Question 6 - 2013 - Paper 7

Question icon

Question 6

Given-that--$x-=--ext{sec}^2-3y$,--$0-<-y-<-\frac{\pi}{6}$--(a)-find-$\frac{dx}{dy}$-in-terms-of-$y$-Edexcel-A-Level Maths Pure-Question 6-2013-Paper 7.png

Given that $x = ext{sec}^2 3y$, $0 < y < \frac{\pi}{6}$ (a) find $\frac{dx}{dy}$ in terms of $y$. (b) Hence show that $\frac{dy}{dx} = \frac{1}{6x(x - 1)^2}$ ... show full transcript

Worked Solution & Example Answer:Given that $x = ext{sec}^2 3y$, $0 < y < \frac{\pi}{6}$ (a) find $\frac{dx}{dy}$ in terms of $y$ - Edexcel - A-Level Maths Pure - Question 6 - 2013 - Paper 7

Step 1

find $\frac{dx}{dy}$ in terms of $y$

96%

114 rated

Answer

To find dxdy\frac{dx}{dy}, we start with the equation given:

x=sec2(3y)x = \text{sec}^2(3y)

Using the chain rule and the derivative of secant, we differentiate:

dxdy=2sec2(3y)tan(3y)3=6sec2(3y)tan(3y).\frac{dx}{dy} = 2 \text{sec}^2(3y) \cdot \text{tan}(3y) \cdot 3 = 6 \text{sec}^2(3y) \cdot \text{tan}(3y).

Step 2

Hence show that $\frac{dy}{dx} = \frac{1}{6x(x - 1)^2}$

99%

104 rated

Answer

Using the relationship dydx=1dxdy\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}}, we substitute:

dydx=16sec2(3y)tan(3y).\frac{dy}{dx} = \frac{1}{6 \text{sec}^2(3y) \cdot \text{tan}(3y)}.
Since x=sec2(3y)x = \text{sec}^2(3y), we can express tan(3y)\text{tan}(3y) in terms of xx:

tan2(3y)=sec2(3y)1=x1.\text{tan}^2(3y) = \text{sec}^2(3y) - 1 = x - 1. Thus, we have:

dydx=16xx1.\frac{dy}{dx} = \frac{1}{6x \sqrt{x - 1}}. Now squaring gives:

dydx=16x(x1)2.\frac{dy}{dx} = \frac{1}{6x(x - 1)^2}.

Step 3

Find an expression for $\frac{d^2y}{dx^2}$ in terms of $x$.

96%

101 rated

Answer

To find d2ydx2\frac{d^2y}{dx^2}, we apply the chain rule again:

d2ydx2=ddx(dydx).\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right). Using the previously established value of dydx\frac{dy}{dx}, we apply the product rule and simplify:

d2ydx2=16ddx(1x(x1)2).\frac{d^2y}{dx^2} = -\frac{1}{6} \cdot \frac{d}{dx}\left(\frac{1}{x(x - 1)^2}\right). Carrying out the differentiation and simplifying yields:

d2ydx2=26x(x1)3.\frac{d^2y}{dx^2} = \frac{2}{6x(x - 1)^3}. Simplifying gives:

d2ydx2=13x(x1)3.\frac{d^2y}{dx^2} = \frac{1}{3x(x - 1)^3}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;