Photo AI

Solve, for $0 \leq \theta < 360^{\circ}$, the equation $$9\sin(\theta + 60^{\circ}) = 4$$ giving your answers to 1 decimal place - Edexcel - A-Level Maths Pure - Question 8 - 2014 - Paper 1

Question icon

Question 8

Solve,-for-$0-\leq-\theta-<-360^{\circ}$,-the-equation--$$9\sin(\theta-+-60^{\circ})-=-4$$-giving-your-answers-to-1-decimal-place-Edexcel-A-Level Maths Pure-Question 8-2014-Paper 1.png

Solve, for $0 \leq \theta < 360^{\circ}$, the equation $$9\sin(\theta + 60^{\circ}) = 4$$ giving your answers to 1 decimal place. You must show each step of your wo... show full transcript

Worked Solution & Example Answer:Solve, for $0 \leq \theta < 360^{\circ}$, the equation $$9\sin(\theta + 60^{\circ}) = 4$$ giving your answers to 1 decimal place - Edexcel - A-Level Maths Pure - Question 8 - 2014 - Paper 1

Step 1

Solve, for $0 \leq \theta < 360^{\circ}$, the equation $$9\sin(\theta + 60^{\circ}) = 4$$

96%

114 rated

Answer

To solve for θ\theta, begin by isolating the sine function:

sin(θ+60)=49\sin(\theta + 60^{\circ}) = \frac{4}{9}

Using a calculator, find:

θ+60=sin1(49)26.3877\theta + 60^{\circ} = \sin^{-1}(\frac{4}{9}) \approx 26.3877^{\circ}

This gives us

θ+60=26.3877\theta + 60^{\circ} = 26.3877^{\circ}

Subtract 60°:

θ=26.387760=33.6123\theta = 26.3877^{\circ} - 60^{\circ} = -33.6123^{\circ}

Since θ\theta is within the range specified, add 360° to get:

θ=326.3877\theta = 326.3877^{\circ}

Now consider the second possible solution for sine:

θ+60=18026.3877=153.6123\theta + 60^{\circ} = 180^{\circ} - 26.3877^{\circ} = 153.6123^{\circ}

Subtract 60°:

θ=153.612360=93.6123\theta = 153.6123^{\circ} - 60^{\circ} = 93.6123^{\circ}

Thus, the solutions rounded to one decimal place are:

θ93.6,326.4\theta \approx 93.6^{\circ}, 326.4^{\circ}

Step 2

Solve, for $-\pi < x < \pi$, the equation $$2\tan x - 3 \sin x = 0$$

99%

104 rated

Answer

Rearranging the equation gives:

2tanx=3sinx2\tan x = 3 \sin x

This can be manipulated as:

tanx=32sinx\tan x = \frac{3}{2} \sin x

Substituting tanx=sinxcosx\tan x = \frac{\sin x}{\cos x} results in:

sinxcosx=32sinx\frac{\sin x}{\cos x} = \frac{3}{2} \sin x

Assuming sinx0\sin x \neq 0, we can multiply both sides by cosx\cos x:

sinx=32sinxcosx\sin x = \frac{3}{2} \sin x \cos x

Rearranging gives:

sinx(132cosx)=0\sin x (1 - \frac{3}{2} \cos x) = 0

Setting each term to zero:

  1. sinx=0\sin x = 0 gives:

    • x=0,π,πx = 0, -\pi, \pi (not included in the range)
  2. Solving 132cosx=01 - \frac{3}{2} \cos x = 0,

    • Leads to cosx=23\cos x = \frac{2}{3}.

Using x=cos1(23)x = \cos^{-1}(\frac{2}{3}) gives:

  • x0.8411x \approx 0.8411 and a second angle: x0.8411x \approx -0.8411.

Thus, the solutions to two decimal places are: x0.84,0.84x \approx 0.84, -0.84

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;