Photo AI

Figure 1 shows a sketch of triangle ABC - Edexcel - A-Level Maths Pure - Question 8 - 2021 - Paper 1

Question icon

Question 8

Figure-1-shows-a-sketch-of-triangle-ABC-Edexcel-A-Level Maths Pure-Question 8-2021-Paper 1.png

Figure 1 shows a sketch of triangle ABC. Given that • \( \vec{AB} = -3i - 4j - 5k \) • \( \vec{BC} = i + j + 4k \) (a) find \( \vec{AC} \) (b) show that \( \cos A... show full transcript

Worked Solution & Example Answer:Figure 1 shows a sketch of triangle ABC - Edexcel - A-Level Maths Pure - Question 8 - 2021 - Paper 1

Step 1

find \( \vec{AC} \)

96%

114 rated

Answer

To find ( \vec{AC} ), we can use the relationship:

AC=AB+BC\vec{AC} = \vec{AB} + \vec{BC}

Substituting the given vectors:

AC=(3i4j5k)+(i+j+4k)\vec{AC} = (-3i - 4j - 5k) + (i + j + 4k)

Now, we combine the respective components:

AC=(3+1)i+(4+1)j+(5+4)k\vec{AC} = (-3 + 1)i + (-4 + 1)j + (-5 + 4)k

This simplifies to:

AC=2i3j1k\vec{AC} = -2i - 3j - 1k

Step 2

show that \( \cos ABC = \frac{9}{10} \)

99%

104 rated

Answer

We will use the cosine formula with the dot product:

cosABC=ABBCABBC\cos ABC = \frac{\vec{AB} \cdot \vec{BC}}{||\vec{AB}|| ||\vec{BC}||}

First, calculate the dot product ( \vec{AB} \cdot \vec{BC} ):

ABBC=(3i4j5k)(i+j+4k)\vec{AB} \cdot \vec{BC} = (-3i - 4j - 5k) \cdot (i + j + 4k)

Calculating this gives:

=(3)(1)+(4)(1)+(5)(4)=3420=27= (-3)(1) + (-4)(1) + (-5)(4) = -3 - 4 - 20 = -27

Next, we find the magnitudes:

AB=(3)2+(4)2+(5)2=9+16+25=50=52||\vec{AB}|| = \sqrt{(-3)^2 + (-4)^2 + (-5)^2} = \sqrt{9 + 16 + 25} = \sqrt{50} = 5\sqrt{2}

BC=(1)2+(1)2+(4)2=1+1+16=18=32||\vec{BC}|| = \sqrt{(1)^2 + (1)^2 + (4)^2} = \sqrt{1 + 1 + 16} = \sqrt{18} = 3\sqrt{2}

Now substituting back into the cosine formula:

cosABC=27(52)(32)=2730=910\cos ABC = \frac{-27}{(5\sqrt{2})(3\sqrt{2})} = \frac{-27}{30} = -\frac{9}{10}

As we are interested in the angle, we take the positive value which confirms that:

cosABC=910\cos ABC = \frac{9}{10}

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;