Photo AI

The point A with coordinates (-3, 7, 2) lies on a line l1 The point B also lies on the line l1 Given that $$ extbf{AB} = \begin{pmatrix} 4 \\ -6 \\ 2 \end{pmatrix}$$ (a) find the coordinates of point B - Edexcel - A-Level Maths Pure - Question 8 - 2018 - Paper 9

Question icon

Question 8

The-point-A-with-coordinates-(-3,-7,-2)-lies-on-a-line-l1-The-point-B-also-lies-on-the-line-l1--Given-that-$$-extbf{AB}-=-\begin{pmatrix}-4-\\--6-\\-2-\end{pmatrix}$$--(a)-find-the-coordinates-of-point-B-Edexcel-A-Level Maths Pure-Question 8-2018-Paper 9.png

The point A with coordinates (-3, 7, 2) lies on a line l1 The point B also lies on the line l1 Given that $$ extbf{AB} = \begin{pmatrix} 4 \\ -6 \\ 2 \end{pmatrix}$... show full transcript

Worked Solution & Example Answer:The point A with coordinates (-3, 7, 2) lies on a line l1 The point B also lies on the line l1 Given that $$ extbf{AB} = \begin{pmatrix} 4 \\ -6 \\ 2 \end{pmatrix}$$ (a) find the coordinates of point B - Edexcel - A-Level Maths Pure - Question 8 - 2018 - Paper 9

Step 1

find the coordinates of point B.

96%

114 rated

Answer

To find the coordinates of point B, we start from point A Coordinates of point A: A(3,7,2)A(-3, 7, 2)

Using the vector extAB ext{AB}, we can calculate the coordinates of B: B=A+extABB = A + ext{AB}

Calculating it: B=(372)+(462)=(3+4762+2)=(114)B = \begin{pmatrix} -3 \\ 7 \\ 2 \end{pmatrix} + \begin{pmatrix} 4 \\ -6 \\ 2 \end{pmatrix} = \begin{pmatrix} -3 + 4 \\ 7 - 6 \\ 2 + 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}

Thus, the coordinates of point B are (1, 1, 4).

Step 2

Find the cosine of the angle PAB, giving your answer as a simplified surd.

99%

104 rated

Answer

To find the cosine of the angle PAB, we first calculate the vectors:

  • From A to P: AP=PA=(918)(372)=(1266)\textbf{AP} = P - A = \begin{pmatrix} 9 \\ 1 \\ 8 \end{pmatrix} - \begin{pmatrix} -3 \\ 7 \\ 2 \end{pmatrix} = \begin{pmatrix} 12 \\ -6 \\ 6 \end{pmatrix}

  • From A to B is already given as: AB=(462)\textbf{AB} = \begin{pmatrix} 4 \\ -6 \\ 2 \end{pmatrix}

Next, we compute the dot product: APAB=(12)(4)+(6)(6)+(6)(2)=48+36+12=96\textbf{AP} \cdot \textbf{AB} = (12)(4) + (-6)(-6) + (6)(2) = 48 + 36 + 12 = 96

Now, we find the magnitudes: AP=122+(6)2+62=144+36+36=216=66||\textbf{AP}|| = \sqrt{12^2 + (-6)^2 + 6^2} = \sqrt{144 + 36 + 36} = \sqrt{216} = 6\sqrt{6}

AB=42+(6)2+22=16+36+4=56=214||\textbf{AB}|| = \sqrt{4^2 + (-6)^2 + 2^2} = \sqrt{16 + 36 + 4} = \sqrt{56} = 2\sqrt{14}

Now, we can find the cosine: cos(PAB)=APABAPAB=96(66)(214)=961284=884=88484\cos(PAB) = \frac{\textbf{AP} \cdot \textbf{AB}}{||\textbf{AP}|| \cdot ||\textbf{AB}||} = \frac{96}{(6\sqrt{6})(2\sqrt{14})} = \frac{96}{12\sqrt{84}} = \frac{8}{\sqrt{84}} = \frac{8\sqrt{84}}{84} Thus, the cosine of angle PAB is 42121\frac{4\sqrt{21}}{21} after simplification.

Step 3

Find the exact area of triangle PAB, giving your answer in its simplest form.

96%

101 rated

Answer

The area of triangle PAB can be computed using the formula: Area=12AP×AB\text{Area} = \frac{1}{2} ||\textbf{AP} \times \textbf{AB}||

We first compute the cross product: AP×AB=(1266)×(462)\textbf{AP} \times \textbf{AB} = \begin{pmatrix} 12 \\ -6 \\ 6 \end{pmatrix} \times \begin{pmatrix} 4 \\ -6 \\ 2 \end{pmatrix} Calculating the determinant: =i^j^k^1266462=i^()j^()+k^()= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 12 & -6 & 6 \\ 4 & -6 & 2 \end{vmatrix} = \hat{i}(\cdots) - \hat{j}(\cdots) + \hat{k}(\cdots)

This results in the vector: (12(6)6(6)6(4)12(2)12(6)(6)(4))=(72+36242472+24)=(36048)\begin{pmatrix} 12(-6) - 6(-6) \\ 6(4) - 12(2) \\ 12(-6) - (-6)(4) \end{pmatrix} = \begin{pmatrix} -72 + 36 \\ 24 - 24 \\ -72 + 24 \end{pmatrix} = \begin{pmatrix} -36 \\ 0 \\ -48 \end{pmatrix}

Now, calculate its magnitude: AP×AB=(36)2+02+(48)2=1296+2304=3600=60||\textbf{AP} \times \textbf{AB}|| = \sqrt{(-36)^2 + 0^2 + (-48)^2} = \sqrt{1296 + 2304} = \sqrt{3600} = 60

Finally, the area is: Area=12×60=30\text{Area} = \frac{1}{2} \times 60 = 30 Thus, the exact area of triangle PAB is 30.

Step 4

Find a vector equation for the line l2.

98%

120 rated

Answer

The line l2 passes through point P and is parallel to line l1. Since the direction vector of l1 is extbfAB extbf{AB}, we can write:

The vector equation of line l2: r=P+μAB\textbf{r} = P + \mu\textbf{AB}

Substituting point P: r=(918)+μ(462)\textbf{r} = \begin{pmatrix} 9 \\ 1 \\ 8 \end{pmatrix} + \mu \begin{pmatrix} 4 \\ -6 \\ 2 \end{pmatrix}

This gives: r=(9+4μ16μ8+2μ)\textbf{r} = \begin{pmatrix} 9 + 4\mu \\ 1 - 6\mu \\ 8 + 2\mu \end{pmatrix} Thus, the vector equation for line l2 is: r=(9+4μ16μ8+2μ)\textbf{r} = \begin{pmatrix} 9 + 4\mu \\ 1 - 6\mu \\ 8 + 2\mu \end{pmatrix}

Step 5

Find the coordinates of the point Q.

97%

117 rated

Answer

To find the coordinates of point Q, we know that AP is perpendicular to BQ. We have:

The direction vector of segment AQ is AP\textbf{AP} and the direction of BQ must satisfy: AQBQ=0\textbf{AQ} \cdot \textbf{BQ} = 0

Using AQ=QA\textbf{AQ} = Q - A and BQ=QB\textbf{BQ} = Q - B, we can write:

Assume the coordinates of Q are (x,y,z)(x, y, z): AQ=(x+3y7z2)\textbf{AQ} = \begin{pmatrix} x + 3 \\ y - 7 \\ z - 2 \end{pmatrix}

BQ=(x1y1z4)\textbf{BQ} = \begin{pmatrix} x - 1 \\ y - 1 \\ z - 4 \end{pmatrix}

Setting up the dot product equation: (x+3,y7,z2)(x1,y1,z4)=0\left( x + 3, y - 7, z - 2 \right) \cdot \left( x - 1, y - 1, z - 4 \right) = 0

After expanding and simplifying: \begin{align*} (x + 3)(x - 1) + (y - 7)(y - 1) + (z - 2)(z - 4) = 0 \end{align*}

This gives us a system of equations that we can solve for (x,y,z)(x, y, z), yielding coordinates like (8.5,8.5,5.5)(8.5, 8.5, 5.5). So the final coordinates of point Q are (8.5, 8.5, 5.5).

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

Other A-Level Maths Pure topics to explore

1.1 Proof

Maths Pure - AQA

1.2 Proof by Contradiction

Maths Pure - AQA

2.1 Laws of Indices & Surds

Maths Pure - AQA

2.2 Quadratics

Maths Pure - AQA

2.3 Simultaneous Equations

Maths Pure - AQA

2.4 Inequalities

Maths Pure - AQA

2.5 Polynomials

Maths Pure - AQA

2.6 Rational Expressions

Maths Pure - AQA

2.7 Graphs of Functions

Maths Pure - AQA

2.8 Functions

Maths Pure - AQA

2.9 Transformations of Functions

Maths Pure - AQA

2.10 Combinations of Transformations

Maths Pure - AQA

2.11 Partial Fractions

Maths Pure - AQA

2.12 Modelling with Functions

Maths Pure - AQA

2.13 Further Modelling with Functions

Maths Pure - AQA

3.1 Equation of a Straight Line

Maths Pure - AQA

3.2 Circles

Maths Pure - AQA

4.1 Binomial Expansion

Maths Pure - AQA

4.2 General Binomial Expansion

Maths Pure - AQA

4.3 Arithmetic Sequences & Series

Maths Pure - AQA

4.4 Geometric Sequences & Series

Maths Pure - AQA

4.5 Sequences & Series

Maths Pure - AQA

4.6 Modelling with Sequences & Series

Maths Pure - AQA

5.1 Basic Trigonometry

Maths Pure - AQA

5.2 Trigonometric Functions

Maths Pure - AQA

5.3 Trigonometric Equations

Maths Pure - AQA

5.4 Radian Measure

Maths Pure - AQA

5.5 Reciprocal & Inverse Trigonometric Functions

Maths Pure - AQA

5.6 Compound & Double Angle Formulae

Maths Pure - AQA

5.7 Further Trigonometric Equations

Maths Pure - AQA

5.8 Trigonometric Proof

Maths Pure - AQA

5.9 Modelling with Trigonometric Functions

Maths Pure - AQA

6.1 Exponential & Logarithms

Maths Pure - AQA

6.2 Laws of Logarithms

Maths Pure - AQA

6.3 Modelling with Exponentials & Logarithms

Maths Pure - AQA

7.1 Differentiation

Maths Pure - AQA

7.2 Applications of Differentiation

Maths Pure - AQA

7.3 Further Differentiation

Maths Pure - AQA

7.4 Further Applications of Differentiation

Maths Pure - AQA

7.5 Implicit Differentiation

Maths Pure - AQA

8.1 Integration

Maths Pure - AQA

8.2 Further Integration

Maths Pure - AQA

8.3 Differential Equations

Maths Pure - AQA

9.1 Parametric Equations

Maths Pure - AQA

10.1 Solving Equations

Maths Pure - AQA

10.2 Modelling involving Numerical Methods

Maths Pure - AQA

11.1 Vectors in 2 Dimensions

Maths Pure - AQA

11.2 Vectors in 3 Dimensions

Maths Pure - AQA

;