Photo AI

6. (a) Prove that $$\frac{1}{\sin 2\theta} = \frac{\cos 2\theta}{\sin 2\theta} = \tan \theta, \quad \theta \neq 90^\circ, n \in \mathbb{Z}$$ (b) Hence, or otherwise, (i) show that $\tan 15^\circ = 2 - \sqrt{3},$ (ii) solve, for $0 < x < 360^\circ,$ $$\csc 4x - \cot 4x = 1$$ - Edexcel - A-Level Maths Pure - Question 7 - 2011 - Paper 3

Question icon

Question 7

6.-(a)-Prove-that--$$\frac{1}{\sin-2\theta}-=-\frac{\cos-2\theta}{\sin-2\theta}-=-\tan-\theta,-\quad-\theta-\neq-90^\circ,-n-\in-\mathbb{Z}$$--(b)-Hence,-or-otherwise,--(i)-show-that-$\tan-15^\circ-=-2---\sqrt{3},$----(ii)-solve,-for-$0-<-x-<-360^\circ,$----$$\csc-4x---\cot-4x-=-1$$-Edexcel-A-Level Maths Pure-Question 7-2011-Paper 3.png

6. (a) Prove that $$\frac{1}{\sin 2\theta} = \frac{\cos 2\theta}{\sin 2\theta} = \tan \theta, \quad \theta \neq 90^\circ, n \in \mathbb{Z}$$ (b) Hence, or otherwis... show full transcript

Worked Solution & Example Answer:6. (a) Prove that $$\frac{1}{\sin 2\theta} = \frac{\cos 2\theta}{\sin 2\theta} = \tan \theta, \quad \theta \neq 90^\circ, n \in \mathbb{Z}$$ (b) Hence, or otherwise, (i) show that $\tan 15^\circ = 2 - \sqrt{3},$ (ii) solve, for $0 < x < 360^\circ,$ $$\csc 4x - \cot 4x = 1$$ - Edexcel - A-Level Maths Pure - Question 7 - 2011 - Paper 3

Step 1

Prove that $$\frac{1}{\sin 2\theta} = \tan \theta$$

96%

114 rated

Answer

To prove the equation, we start from the left-hand side:

  1. We know that (\sin 2\theta = 2\sin \theta \cos \theta). Hence, 1sin2θ=12sinθcosθ\frac{1}{\sin 2\theta} = \frac{1}{2\sin \theta \cos \theta}

  2. Dividing the right-hand side by (\sin 2\theta): cos2θsin2θ=tanθ\frac{\cos 2\theta}{\sin 2\theta} = \tan \theta

  3. Thus, we can write: cos2θsin2θ=2sinθcosθ2sinθcosθ=tanθ\frac{\cos 2\theta}{\sin 2\theta} = \frac{2\sin \theta \cos \theta}{2\sin \theta \cos \theta} = \tan \theta

Hence, we have shown that the original statement holds.

Step 2

show that tan 15° = 2 - √3

99%

104 rated

Answer

To show this result, we can utilize the tangent subtraction formula:

  1. Using the formula for tangent of a difference: tan(6045)=tan60tan451+tan60tan45\tan(60^\circ - 45^\circ) = \frac{\tan 60^\circ - \tan 45^\circ}{1 + \tan 60^\circ \tan 45^\circ}

  2. Substituting known values: tan60=3,  tan45=1\tan 60^\circ = \sqrt{3},\;\tan 45^\circ = 1 tan15=311+3\tan 15^\circ = \frac{\sqrt{3} - 1}{1 + \sqrt{3}}

  3. Rationalizing the denominator: =(31)(13)(1+3)(13)=2323=23= \frac{(\sqrt{3} - 1)(1 - \sqrt{3})}{(1 + \sqrt{3})(1 - \sqrt{3})} = \frac{2 - \sqrt{3}}{2 - 3} = 2 - \sqrt{3}

Thus, confirming that (\tan 15^\circ = 2 - \sqrt{3}).

Step 3

solve, for 0 < x < 360° cosec 4x - cot 4x = 1

96%

101 rated

Answer

To solve the equation:

  1. Rearranging the equation, we have: csc4x=cot4x+1\csc 4x = \cot 4x + 1

  2. Replacing cosecant and cotangent with sine and cosine: 1sin4x=cos4xsin4x+1\frac{1}{\sin 4x} = \frac{\cos 4x}{\sin 4x} + 1

  3. This simplifies to: 1sin4x=cos4x+sin4xsin4x\frac{1}{\sin 4x} = \frac{\cos 4x + \sin 4x}{\sin 4x}

  4. Thus, multiplying through by (\sin 4x) leads to: 1=cos4x+sin4x1 = \cos 4x + \sin 4x

  5. Rearranging gives: cos4x+sin4x=1\cos 4x + \sin 4x = 1

It can be solved further using trigonometric identities such as the unit circle or additional transformations, providing the specific values of (x) within the range ((0, 360)).

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;