Photo AI

Using sin² θ + cos² θ = 1, show that the cosec² θ - cot² θ = 1 - Edexcel - A-Level Maths Pure - Question 7 - 2006 - Paper 4

Question icon

Question 7

Using-sin²-θ-+-cos²-θ-=-1,-show-that-the-cosec²-θ---cot²-θ-=-1-Edexcel-A-Level Maths Pure-Question 7-2006-Paper 4.png

Using sin² θ + cos² θ = 1, show that the cosec² θ - cot² θ = 1. Hence, or otherwise prove that cosec⁴ θ - cot⁴ θ = cosec² θ + cot² θ. Solve, for 90° < θ < 180°, co... show full transcript

Worked Solution & Example Answer:Using sin² θ + cos² θ = 1, show that the cosec² θ - cot² θ = 1 - Edexcel - A-Level Maths Pure - Question 7 - 2006 - Paper 4

Step 1

Using sin² θ + cos² θ = 1, show that the cosec² θ - cot² θ = 1.

96%

114 rated

Answer

To prove this identity, we begin by dividing the equation sin² θ + cos² θ = 1 by sin² θ:

sin2θ+cos2θsin2θ=1sin2θ\frac{sin² θ + cos² θ}{sin² θ} = \frac{1}{sin² θ}

This simplifies to:

1+cos2θsin2θ=cosec2θ1 + \frac{cos² θ}{sin² θ} = cosec² θ

Thus, we have:

1+cot2θ=cosec2θ1 + cot² θ = cosec² θ

Rearranging gives us:

cosec2θcot2θ=1cosec² θ - cot² θ = 1

Step 2

Hence, or otherwise prove that cosec⁴ θ - cot⁴ θ = cosec² θ + cot² θ.

99%

104 rated

Answer

Using the identity derived from part (a), we can express cosec⁴ θ - cot⁴ θ in terms of cosec² θ and cot² θ. We utilize the difference of squares formula:

cosec4θcot4θ=(cosec2θcot2θ)(cosec2θ+cot2θ)cosec⁴ θ - cot⁴ θ = (cosec² θ - cot² θ)(cosec² θ + cot² θ)

From part (a), we know that:

cosec2θcot2θ=1cosec² θ - cot² θ = 1

Therefore, substituting in gives us:

cosec4θcot4θ=1(cosec2θ+cot2θ)=cosec2θ+cot2θcosec⁴ θ - cot⁴ θ = 1(cosec² θ + cot² θ) = cosec² θ + cot² θ

Step 3

Solve, for 90° < θ < 180°, cosec⁴ θ - cot⁴ θ = 2 - cot θ.

96%

101 rated

Answer

Starting with the equation from part (c):

cosec4θcot4θ=2cotθcosec⁴ θ - cot⁴ θ = 2 - cot θ

Substituting the expression from part (b) gives:

cosec2θ+cot2θ=2cotθcosec² θ + cot² θ = 2 - cot θ

Now rearranging for terms involving cot θ leads to:

cot2θ+cotθ+12=0cot² θ + cot θ + 1 - 2 = 0

Which simplifies to:

cot2θ+cotθ1=0cot² θ + cot θ - 1 = 0

We can solve this quadratic equation using the quadratic formula:

cotθ=b±b24ac2acot θ = \frac{-b \pm \sqrt{b² - 4ac}}{2a}

Here, a = 1, b = 1, and c = -1:

cotθ=1±1+42=1±52cot θ = \frac{-1 \pm \sqrt{1 + 4}}{2} = \frac{-1 \pm \sqrt{5}}{2}

Calculating gives us two possible solutions for cot θ:

cotθ=1+52 or cotθ=152cot θ = \frac{-1 + \sqrt{5}}{2} \text{ or } cot θ = \frac{-1 - \sqrt{5}}{2}

Considering the range 90° < θ < 180°, we find:

θ=135°θ = 135°

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;