Photo AI

y = \sqrt{3 + x} (a) Complete the table below, giving the values of y to 3 decimal places - Edexcel - A-Level Maths Pure - Question 9 - 2012 - Paper 3

Question icon

Question 9

y-=-\sqrt{3-+-x}--(a)-Complete-the-table-below,-giving-the-values-of-y-to-3-decimal-places-Edexcel-A-Level Maths Pure-Question 9-2012-Paper 3.png

y = \sqrt{3 + x} (a) Complete the table below, giving the values of y to 3 decimal places. | x | 0 | 0.25 | 0.5 | 0.75 | 1 | |-----|------|-------|----... show full transcript

Worked Solution & Example Answer:y = \sqrt{3 + x} (a) Complete the table below, giving the values of y to 3 decimal places - Edexcel - A-Level Maths Pure - Question 9 - 2012 - Paper 3

Step 1

(a) Complete the table below, giving the values of y to 3 decimal places.

96%

114 rated

Answer

To complete the table, we calculate the values of y using the function:

  1. For x = 0:

y = \sqrt{3 + 0} = \sqrt{3} \approx 1.000

  1. For x = 0.25:

y = \sqrt{3 + 0.25} = \sqrt{3.25} \approx 1.251

  1. For x = 0.5:

y = \sqrt{3 + 0.5} = \sqrt{3.5} \approx 1.495

  1. For x = 0.75:

y = \sqrt{3 + 0.75} = \sqrt{3.75} \approx 1.936

  1. For x = 1:

y = \sqrt{3 + 1} = \sqrt{4} = 2.000

The final table will be:

x00.250.50.751
y11.2511.4951.9362

Step 2

(b) Use the trapezium rule with all the values of y from your table to find an approximation for the value of \int_0^1 \sqrt{3 + x} \, dx

99%

104 rated

Answer

To apply the trapezium rule, we use the formula:

Ih2(y0+2y1+2y2+2y3+yn)I \approx \frac{h}{2} (y_0 + 2y_1 + 2y_2 + 2y_3 + y_n)

Where:

  • h is the width of each interval.
  • y_0, y_1, y_2, y_3, and y_n are the values of y from the table.
  1. Here, the interval from 0 to 1 is divided into 4 parts:

    • h = (1 - 0) / 4 = 0.25
  2. Plugging in values into the formula:

    I0.252(1+2(1.251)+2(1.495)+2(1.936)+2)I \approx \frac{0.25}{2} (1 + 2(1.251) + 2(1.495) + 2(1.936) + 2)

    =0.125(1+2.502+2.990+3.872+2)= 0.125 (1 + 2.502 + 2.990 + 3.872 + 2)

    =0.125(12.364)1.5455= 0.125 (12.364) \approx 1.5455

Therefore, the approximation for the value of \int_0^1 \sqrt{3 + x} , dx \approx 1.5455.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;