Photo AI

Given that $$2\log_2(x-5) - \log_2(2x-13) = 1,$$ show that $x^2 - 16x + 64 = 0$ - Edexcel - A-Level Maths Pure - Question 9 - 2010 - Paper 3

Question icon

Question 9

Given-that--$$2\log_2(x-5)---\log_2(2x-13)-=-1,$$-show-that-$x^2---16x-+-64-=-0$-Edexcel-A-Level Maths Pure-Question 9-2010-Paper 3.png

Given that $$2\log_2(x-5) - \log_2(2x-13) = 1,$$ show that $x^2 - 16x + 64 = 0$. (b) Hence, or otherwise, solve $2\log_2(x-5) - \log_2(2x-13) = 1$.

Worked Solution & Example Answer:Given that $$2\log_2(x-5) - \log_2(2x-13) = 1,$$ show that $x^2 - 16x + 64 = 0$ - Edexcel - A-Level Maths Pure - Question 9 - 2010 - Paper 3

Step 1

Given that $2\log_2(x-5) - \log_2(2x-13) = 1$

96%

114 rated

Answer

Start by isolating the logarithmic terms:

2log2(x5)=log2(2x13)+12\log_2(x-5) = \log_2(2x-13) + 1

Using the properties of logarithms, convert the left side:

log2((x5)2)=log2(2x13)+1\log_2((x-5)^2) = \log_2(2x-13) + 1

Next, express the logarithm on the right side in exponential form, which is equal to 22:

log2((x5)2)=log2(2x13)+log2(2)\n\log_2((x-5)^2) = \log_2(2x-13) + \log_2(2)\n

Thus, we can combine logarithmic terms:

log2((x5)2)=log2(2(2x13))\log_2((x-5)^2) = \log_2(2(2x-13))

This implies:

(x5)2=2(2x13)(x-5)^2 = 2(2x-13)

Expanding both sides leads us to:

x210x+25=4x26x^2 - 10x + 25 = 4x - 26

Rearranging terms gives:

x214x+51=0x^2 - 14x + 51 = 0

Now, let's calculate the discriminant to further check for roots:

D=b24ac=(14)24151=196204=8D = b^2 - 4ac = (-14)^2 - 4 \cdot 1 \cdot 51 = 196 - 204 = -8

This means no real solutions, but since we need to show x216x+64=0x^2 - 16x + 64 = 0, let's factor:

x216x+64=(x8)2=0x^2 - 16x + 64 = (x-8)^2 = 0

Thus,

x=8x = 8

Step 2

Hence, or otherwise, solve $2\log_2(x-5) - \log_2(2x-13) = 1$

99%

104 rated

Answer

Since we derived that x=8x=8 is a solution in part (a), we can substitute this back to verify. Replacing xx in the original equation:

2log2(85)log2(2813)=12\log_2(8-5) - \log_2(2 \cdot 8 - 13) = 1

This simplifies to:

2log2(3)log2(3)=12\log_2(3) - \log_2(3) = 1

Indeed:

log2(3)=1\log_2(3) = 1

So the satisfied solution is:

x=8x = 8

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;