Photo AI

3. (a) Express $5 \, ext{cos} \, x - 3 \, ext{sin} \, x$ in the form $R \, ext{cos}(x + heta)$, where $R > 0$ and $0 < heta < \frac{1}{2} \, ext{π}$ - Edexcel - A-Level Maths Pure - Question 5 - 2010 - Paper 2

Question icon

Question 5

3.-(a)-Express-$5-\,--ext{cos}-\,-x---3-\,--ext{sin}-\,-x$-in-the-form-$R-\,--ext{cos}(x-+--heta)$,-where-$R->-0$-and-$0-<--heta-<-\frac{1}{2}-\,--ext{π}$-Edexcel-A-Level Maths Pure-Question 5-2010-Paper 2.png

3. (a) Express $5 \, ext{cos} \, x - 3 \, ext{sin} \, x$ in the form $R \, ext{cos}(x + heta)$, where $R > 0$ and $0 < heta < \frac{1}{2} \, ext{π}$. (b) He... show full transcript

Worked Solution & Example Answer:3. (a) Express $5 \, ext{cos} \, x - 3 \, ext{sin} \, x$ in the form $R \, ext{cos}(x + heta)$, where $R > 0$ and $0 < heta < \frac{1}{2} \, ext{π}$ - Edexcel - A-Level Maths Pure - Question 5 - 2010 - Paper 2

Step 1

Express $5 \, ext{cos} \, x - 3 \, ext{sin} \, x$ in the form $R \, ext{cos}(x + heta)$

96%

114 rated

Answer

To express 5extcosx3extsinx5 \, ext{cos} \, x - 3 \, ext{sin} \, x in the desired form, we first identify the coefficients:

  • Coefficient of cos\text{cos}: 55
  • Coefficient of sin\text{sin}: 3-3

Next, we compute RR using the formula:

R=(52)+(3)2=25+9=34R = \sqrt{(5^2) + (-3)^2} = \sqrt{25 + 9} = \sqrt{34}

Now, we find θ\theta such that:

tan(θ)=35\tan(\theta) = \frac{-3}{5}

Calculating θ\theta gives us:

θ=atan2(3,5)0.5404\theta = \text{atan2}(-3, 5) \approx -0.5404

Thus, we can rewrite the expression as:

5extcosx3extsinx=34cos(x+(0.5404))5 \, ext{cos} \, x - 3 \, ext{sin} \, x = \sqrt{34} \, \text{cos} \left(x + (0.5404) \right)

Step 2

Solve the equation $5 \, ext{cos} \, x - 3 \, ext{sin} \, x = 4$

99%

104 rated

Answer

Using the result from part (a), we substitute:

34cos(x+0.5404)=4\sqrt{34} \, \text{cos}\left(x + 0.5404\right) = 4

Dividing both sides by 34\sqrt{34} gives:

cos(x+0.5404)=434\text{cos}\left(x + 0.5404\right) = \frac{4}{\sqrt{34}}

Now, calculate the value:

4340.6859\frac{4}{\sqrt{34}} \approx 0.6859

Finding x+0.5404x + 0.5404:

direction 1: x+0.5404=cos1(0.6859)0.8184x + 0.5404 = \text{cos}^{-1}(0.6859) \approx 0.8184

direction 2: x+0.5404=0.8184+2πx + 0.5404 = -0.8184 + 2 \pi

Solving for xx yields:

direction 1: x=0.81840.54040.2780x = 0.8184 - 0.5404 \approx 0.2780 direction 2: x=0.8184+2π0.54045.4654x = -0.8184 + 2\pi - 0.5404 \approx 5.4654

Thus, the solutions are:

x0.28,5.47x \approx 0.28, 5.47 (to 2 decimal places).

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;