Photo AI

5. (a) Write \( \frac{2\sqrt{x}+3}{x} \) in the form \( 2p + 3x^r \) where \( p \) and \( q \) are constants - Edexcel - A-Level Maths Pure - Question 6 - 2008 - Paper 2

Question icon

Question 6

5.-(a)-Write-\(-\frac{2\sqrt{x}+3}{x}-\)-in-the-form-\(-2p-+-3x^r-\)-where-\(-p-\)-and-\(-q-\)-are-constants-Edexcel-A-Level Maths Pure-Question 6-2008-Paper 2.png

5. (a) Write \( \frac{2\sqrt{x}+3}{x} \) in the form \( 2p + 3x^r \) where \( p \) and \( q \) are constants. Given that \( y = 5x - 7 + \frac{2\sqrt{x}+3}{x} \),... show full transcript

Worked Solution & Example Answer:5. (a) Write \( \frac{2\sqrt{x}+3}{x} \) in the form \( 2p + 3x^r \) where \( p \) and \( q \) are constants - Edexcel - A-Level Maths Pure - Question 6 - 2008 - Paper 2

Step 1

(a) Write \( \frac{2\sqrt{x}+3}{x} \) in the form \( 2p + 3x^r \)

96%

114 rated

Answer

To rewrite the expression ( \frac{2\sqrt{x}+3}{x} ), start by breaking it down:

  1. Separate the terms:

    [ \frac{2\sqrt{x}}{x} + \frac{3}{x} ]

  2. Simplify each term:

    • The first term becomes ( \frac{2\sqrt{x}}{x} = 2\frac{1}{\sqrt{x}} = \frac{2}{x^{1/2}} )
    • The second term is just ( \frac{3}{x} = 3x^{-1} )
  3. Combine the simplified terms:

    [ \frac{2}{x^{1/2}} + 3x^{-1} ]

The expression is now in the form ( 2p + 3x^r ), where ( p = \frac{1}{2} ) and ( q = -1 ).

Step 2

(b) find \( \frac{dy}{dx} \), simplifying the coefficient of each term.

99%

104 rated

Answer

Given ( y = 5x - 7 + \frac{2\sqrt{x}+3}{x} ), differentiate it term by term:

  1. Differentiate ( 5x ) which gives:

    [ \frac{dy}{dx} = 5 ]

  2. The term ( -7 ) differentiates to 0:

    [ \frac{dy}{dx} = 5 + 0 ]

  3. Now, differentiate ( \frac{2\sqrt{x}+3}{x} ). Use the quotient rule:

    Let ( u = 2\sqrt{x}+3 ) and ( v = x ).

    [ \frac{du}{dx} = \frac{2}{2\sqrt{x}} \cdot \frac{1}{2}\sqrt{x} = \frac{1}{\sqrt{x}} ] and ( \frac{dv}{dx} = 1 )

    Using the quotient rule:\n [ \frac{d}{dx} \left( \frac{u}{v} \right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2} ]

    Applying it:

    [ \frac{dy}{dx} = 5 + \frac{x \cdot \frac{1}{\sqrt{x}} - (2\sqrt{x}+3) \cdot 1}{x^2} ]

    which simplifies to:

    [ \frac{dy}{dx} = 5 + \frac{\sqrt{x} - 2\sqrt{x} - 3}{x^2} = 5 + \frac{-\sqrt{x} - 3}{x^2} ]

Thus,\n [ \frac{dy}{dx} = 5 - \frac{\sqrt{x} + 3}{x^2} ]

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;